Journal article 1217 views 97 downloads
Invariant Measures for Path-Dependent Random Diffusions
ArXiv: 1706.05638
Swansea University Author: Chenggui Yuan
-
PDF | Accepted Manuscript
Download (311.4KB)
Abstract
In this paper, we investigate the existence and uniqueness of invariant measure of stochastic functional differential equations with Markovian switching. Under an average condition, we prove that there is a unique measure for the exact solutions and the corresponding Euler numerical solutions. Moreo...
Published in: | ArXiv: 1706.05638 |
---|---|
Published: |
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa36619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2017-11-06T13:59:43Z |
---|---|
last_indexed |
2023-04-14T02:46:16Z |
id |
cronfa36619 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0" encoding="utf-8"?><rfc1807 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"><bib-version>v2</bib-version><id>36619</id><entry>2017-11-06</entry><title>Invariant Measures for Path-Dependent Random Diffusions</title><swanseaauthors><author><sid>22b571d1cba717a58e526805bd9abea0</sid><ORCID>0000-0003-0486-5450</ORCID><firstname>Chenggui</firstname><surname>Yuan</surname><name>Chenggui Yuan</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-06</date><deptcode>SMA</deptcode><abstract>In this paper, we investigate the existence and uniqueness of invariant measure of stochastic functional differential equations with Markovian switching. Under an average condition, we prove that there is a unique measure for the exact solutions and the corresponding Euler numerical solutions. Moreover, the invariant measure of the Euler numerical solutions will converge to that of the exact solutions as the step size tends to zero.</abstract><type>Journal Article</type><journal>ArXiv: 1706.05638</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords>Invariant measure; Path-dependent random diffusion; Ergodicity; Wasserstein distance; Euler-Maruyama scheme</keywords><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url/><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-05-22T14:04:52.2315211</lastEdited><Created>2017-11-06T10:54:40.6529956</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Jianhai</firstname><surname>Bao</surname><order>1</order></author><author><firstname>Jinghai</firstname><surname>Shao</surname><order>2</order></author><author><firstname>Chenggui</firstname><surname>Yuan</surname><orcid>0000-0003-0486-5450</orcid><order>3</order></author></authors><documents><document><filename>0036619-18062018105642.pdf</filename><originalFilename>36619.pdf</originalFilename><uploaded>2018-06-18T10:56:42.5800000</uploaded><type>Output</type><contentLength>344727</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-06-18T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
v2 36619 2017-11-06 Invariant Measures for Path-Dependent Random Diffusions 22b571d1cba717a58e526805bd9abea0 0000-0003-0486-5450 Chenggui Yuan Chenggui Yuan true false 2017-11-06 SMA In this paper, we investigate the existence and uniqueness of invariant measure of stochastic functional differential equations with Markovian switching. Under an average condition, we prove that there is a unique measure for the exact solutions and the corresponding Euler numerical solutions. Moreover, the invariant measure of the Euler numerical solutions will converge to that of the exact solutions as the step size tends to zero. Journal Article ArXiv: 1706.05638 Invariant measure; Path-dependent random diffusion; Ergodicity; Wasserstein distance; Euler-Maruyama scheme 0 0 0 0001-01-01 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2023-05-22T14:04:52.2315211 2017-11-06T10:54:40.6529956 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Jianhai Bao 1 Jinghai Shao 2 Chenggui Yuan 0000-0003-0486-5450 3 0036619-18062018105642.pdf 36619.pdf 2018-06-18T10:56:42.5800000 Output 344727 application/pdf Accepted Manuscript true 2018-06-18T00:00:00.0000000 true eng |
title |
Invariant Measures for Path-Dependent Random Diffusions |
spellingShingle |
Invariant Measures for Path-Dependent Random Diffusions Chenggui Yuan |
title_short |
Invariant Measures for Path-Dependent Random Diffusions |
title_full |
Invariant Measures for Path-Dependent Random Diffusions |
title_fullStr |
Invariant Measures for Path-Dependent Random Diffusions |
title_full_unstemmed |
Invariant Measures for Path-Dependent Random Diffusions |
title_sort |
Invariant Measures for Path-Dependent Random Diffusions |
author_id_str_mv |
22b571d1cba717a58e526805bd9abea0 |
author_id_fullname_str_mv |
22b571d1cba717a58e526805bd9abea0_***_Chenggui Yuan |
author |
Chenggui Yuan |
author2 |
Jianhai Bao Jinghai Shao Chenggui Yuan |
format |
Journal article |
container_title |
ArXiv: 1706.05638 |
institution |
Swansea University |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we investigate the existence and uniqueness of invariant measure of stochastic functional differential equations with Markovian switching. Under an average condition, we prove that there is a unique measure for the exact solutions and the corresponding Euler numerical solutions. Moreover, the invariant measure of the Euler numerical solutions will converge to that of the exact solutions as the step size tends to zero. |
published_date |
0001-01-01T14:04:50Z |
_version_ |
1766599625978937344 |
score |
11.036706 |