No Cover Image

Book chapter 915 views

Efficient System Reliability Analysis of Earth Slopes Based on Support Vector Machine Regression Model

Subhadeep Metya, Tanmoy Mukhopadhyay, Sondipon Adhikari Orcid Logo, Gautam Bhattacharya

Handbook of Neural Computation, Pages: 127 - 143

Swansea University Author: Sondipon Adhikari Orcid Logo

Full text not available from this repository: check for access using links below.

DOI (Published version): 10.1016/B978-0-12-811318-9.00007-7

Abstract

This chapter presents a surrogate-based approach for system reliability analysis of earth slopes considering random soil properties under the framework of limit equilibrium method of slices. The support vector machine regression (SVR) model is employed as a surrogate to approximate the limit-state f...

Full description

Published in: Handbook of Neural Computation
ISBN: 978-012811319-6
Published: Elsevier 2017
URI: https://cronfa.swan.ac.uk/Record/cronfa36668
Abstract: This chapter presents a surrogate-based approach for system reliability analysis of earth slopes considering random soil properties under the framework of limit equilibrium method of slices. The support vector machine regression (SVR) model is employed as a surrogate to approximate the limit-state function based on the Bishop's simplified method coupled with a nonlinear programming technique of optimization. The value of the minimum factor of safety and the location of the critical slip surface are treated as the output quantities of interest. Finally, Monte Carlo simulation in combination with Latin hypercube sampling is performed via the SVR model to estimate the system failure probability of slopes. Based on the detailed results, the performance of the SVR-based proposed procedure seems very promising in terms of accuracy and efficiency.
Keywords: Slope stability; System reliability analysis; Support vector machine regression model; Monte Carlo simulation; Critical slip surface
College: Faculty of Science and Engineering
Start Page: 127
End Page: 143