Journal article 571 views 230 downloads
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures
Journal of Non-Newtonian Fluid Mechanics
Swansea University Authors: Michael Webster , Hamid Tamaddon Jahromi
-
PDF | Accepted Manuscript
Download (3.96MB)
DOI (Published version): 10.1016/j.jnnfm.2017.11.006
Abstract
This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of s...
Published in: | Journal of Non-Newtonian Fluid Mechanics |
---|---|
ISSN: | 0377-0257 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa37028 |
first_indexed |
2017-11-23T14:05:18Z |
---|---|
last_indexed |
2020-06-03T18:50:15Z |
id |
cronfa37028 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-03T14:19:20.6344382</datestamp><bib-version>v2</bib-version><id>37028</id><entry>2017-11-23</entry><title>On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures</title><swanseaauthors><author><sid>b6a811513b34d56e66489512fc2c6c61</sid><ORCID>0000-0002-7722-821X</ORCID><firstname>Michael</firstname><surname>Webster</surname><name>Michael Webster</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>b3a1417ca93758b719acf764c7ced1c5</sid><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><name>Hamid Tamaddon Jahromi</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-11-23</date><abstract>This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-based dissipative parameter (λD).</abstract><type>Journal Article</type><journal>Journal of Non-Newtonian Fluid Mechanics</journal><publisher/><issnPrint>0377-0257</issnPrint><keywords>Experimental data vs numerical predictions; Boger fluids; flow-structure and pressure-drop; circular contraction flow; lip-, salient- and elastic-corner vortices; swIM model</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-12-31</publishedDate><doi>10.1016/j.jnnfm.2017.11.006</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-03T14:19:20.6344382</lastEdited><Created>2017-11-23T11:02:27.3054145</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>H.R.</firstname><surname>Tamaddon-Jahromi</surname><order>1</order></author><author><firstname>J.E.</firstname><surname>López-Aguilar</surname><order>2</order></author><author><firstname>M.F.</firstname><surname>Webster</surname><order>3</order></author><author><firstname>Michael</firstname><surname>Webster</surname><orcid>0000-0002-7722-821X</orcid><order>4</order></author><author><firstname>Hamid</firstname><surname>Tamaddon Jahromi</surname><order>5</order></author></authors><documents><document><filename>0037028-23112017110541.pdf</filename><originalFilename>tamaddon-jahromi2017.pdf</originalFilename><uploaded>2017-11-23T11:05:41.7030000</uploaded><type>Output</type><contentLength>4276212</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-11-21T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-06-03T14:19:20.6344382 v2 37028 2017-11-23 On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures b6a811513b34d56e66489512fc2c6c61 0000-0002-7722-821X Michael Webster Michael Webster true false b3a1417ca93758b719acf764c7ced1c5 Hamid Tamaddon Jahromi Hamid Tamaddon Jahromi true false 2017-11-23 This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-based dissipative parameter (λD). Journal Article Journal of Non-Newtonian Fluid Mechanics 0377-0257 Experimental data vs numerical predictions; Boger fluids; flow-structure and pressure-drop; circular contraction flow; lip-, salient- and elastic-corner vortices; swIM model 31 12 2017 2017-12-31 10.1016/j.jnnfm.2017.11.006 COLLEGE NANME COLLEGE CODE Swansea University 2020-06-03T14:19:20.6344382 2017-11-23T11:02:27.3054145 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised H.R. Tamaddon-Jahromi 1 J.E. López-Aguilar 2 M.F. Webster 3 Michael Webster 0000-0002-7722-821X 4 Hamid Tamaddon Jahromi 5 0037028-23112017110541.pdf tamaddon-jahromi2017.pdf 2017-11-23T11:05:41.7030000 Output 4276212 application/pdf Accepted Manuscript true 2018-11-21T00:00:00.0000000 false eng |
title |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
spellingShingle |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures Michael Webster Hamid Tamaddon Jahromi |
title_short |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
title_full |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
title_fullStr |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
title_full_unstemmed |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
title_sort |
On modelling viscoelastic flow through abrupt circular 8:1 contractions – matching experimental pressure-drops and vortex structures |
author_id_str_mv |
b6a811513b34d56e66489512fc2c6c61 b3a1417ca93758b719acf764c7ced1c5 |
author_id_fullname_str_mv |
b6a811513b34d56e66489512fc2c6c61_***_Michael Webster b3a1417ca93758b719acf764c7ced1c5_***_Hamid Tamaddon Jahromi |
author |
Michael Webster Hamid Tamaddon Jahromi |
author2 |
H.R. Tamaddon-Jahromi J.E. López-Aguilar M.F. Webster Michael Webster Hamid Tamaddon Jahromi |
format |
Journal article |
container_title |
Journal of Non-Newtonian Fluid Mechanics |
publishDate |
2017 |
institution |
Swansea University |
issn |
0377-0257 |
doi_str_mv |
10.1016/j.jnnfm.2017.11.006 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
This study compares and contrasts computational predictions against experimental data for some viscoelastic contraction flows. Nigen and Walters (2002) [1], provides the comparative data-set, the specific flow of interest is an 8:1 abrupt circular contraction, and the constitutive model is that of swanINNFM(q) [swIM]. Taken against increasing flow-rate, such a model is observed to capture significant vortex-enhancement in these axisymmetric flows, reflecting well the counterpart experimental findings. In addition, rich vortex characteristics are reflected, through evolving patterns of salient-corner, lip-vortex and elastic-corner vortices. A systematic parametric analysis is conducted over three independent and governing material parameters in the model, whilst attempting to interpret rheological adjustment against such changes in flow-structure. Specifically, this has involved variation in solvent-fraction (β), finite-extensibility parameter (L), and extensional-based dissipative parameter (λD). |
published_date |
2017-12-31T13:23:10Z |
_version_ |
1821411944243920896 |
score |
11.247077 |