Journal article 1225 views 108 downloads
Compressive strength after blast of sandwich composite materials
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume: 372, Issue: 2015, Pages: 20130212 - 20130212
Swansea University Author: Hari Arora
-
PDF | Version of Record
Download (3.06MB)
DOI (Published version): 10.1098/rsta.2013.0212
Abstract
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on t...
Published in: | Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences |
---|---|
ISSN: | 1364-503X 1471-2962 |
Published: |
The Royal Society
2014
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa37201 |
Abstract: |
Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. |
---|---|
Keywords: |
blast, composites, sandwich materials, compression after impact |
College: |
Faculty of Science and Engineering |
Issue: |
2015 |
Start Page: |
20130212 |
End Page: |
20130212 |