No Cover Image

Conference Paper/Proceeding/Abstract 831 views

Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts

Robbie Sutton, Eifion Jewell Orcid Logo, Justin Searle, Jon Elvins

Sustainable Energy Technology (SET2016),

Swansea University Author: Eifion Jewell Orcid Logo

Abstract

A transpired solar collector (TSC) is a renewable technology developed to harness useful thermal energy from the sun. An example of such technology is Colorcoat Renew SC®, TATA Steels own steel cladding solar collector, being the initial project driver. The energy available over a typical year varie...

Full description

Published in: Sustainable Energy Technology (SET2016),
Published: Singapore Sustainable Energy Technology (SET2016) 2016
Online Access: http://set2016.chbe.nus.edu.sg/confprog.html
URI: https://cronfa.swan.ac.uk/Record/cronfa37735
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2017-12-29T05:05:11Z
last_indexed 2019-08-12T14:54:21Z
id cronfa37735
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-08-12T11:08:42.8557233</datestamp><bib-version>v2</bib-version><id>37735</id><entry>2017-12-23</entry><title>Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts</title><swanseaauthors><author><sid>13dc152c178d51abfe0634445b0acf07</sid><ORCID>0000-0002-6894-2251</ORCID><firstname>Eifion</firstname><surname>Jewell</surname><name>Eifion Jewell</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2017-12-23</date><deptcode>MECH</deptcode><abstract>A transpired solar collector (TSC) is a renewable technology developed to harness useful thermal energy from the sun. An example of such technology is Colorcoat Renew SC&#xAE;, TATA Steels own steel cladding solar collector, being the initial project driver. The energy available over a typical year varies seasonally. Due to seasonal variations, excess solar thermal energy is generated in summer, when the thermal demand of a building is significantly lower, and vice versa in winter. Thermochemical storage methods can be utilised to store the excess thermal energy generated in summer for use in winter when building demand is much greater. The thermochemical storage method under consideration involves the hydration and dehydration of chemical salts, storing and releasing thermal energy via the fully reversible endo/exothermic chemical reaction: salt&#x2219;x(H_2 O)+heat &#x2194;salt+x(H_2 O). Chemical salts housed within matrices (SIMs) have been shown to have minimum hysteresis and material degradation over hydration and dehydration cycles. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 are shown to be promising candidates. The maximum air temperature attainable via a TSC (typically 80&#xB0;C) dictates the lowest hydrated state available for each salt and thus the maximum attainable storage capability, based on the dehydration temperature of the hydrated states of the salt and the associated change in enthalpy. The storage capacities attainable are calculated to be 1204.03 kJ.mol-1, 757.43 kJ.mol-1 and 1492.43 kJ.mol-1 for CaCl2, LiNO3 and MgSO4 respectively, being more than 66% of the overall storage capacity.This work looks to investigate the performance of the SIMs under discharge properties representative of a typical thermal storage system. The thermal output of the SIMs relates to the change of enthalpies associated with the change of hydrated state following the addition of H2O molecules. Experiments are developed to simulate typical discharge properties of a thermochemical storage system; monitoring the variation of temperature and humidity through differing volumes of active SIM, to track the moisture absorption of the SIM and the associated thermal release. An input humidity of 75% at 20&#xB0;C results in a moisture content of 12.9 gm-3, representative of maximum moisture content of air during winter months; when the discharge cycle occurs. A number of studies are completed by varying the type and amount of active salt within the SIM, along with, material volumes, input flow rate, duration and cyclic efficiency. A larger change in temperature (DT) is expected with higher salt content SIM, due to the overall increase in storage capacity. However, a higher salt content within the SIM does not result in an increases DT, due to the reduction in free space within the SIM constricting air flow. Typically a higher flow rate results in a larger DT attained due to the increase moisture content over a period of time, and thus an increased opportunity for water adsorption of the SIMs. Initial experiments confirm the occurrence of the thermochemical reaction, with a DT of 25&#xB0;C and 12&#xB0;C for the CaCl2 and LiNO3 SIMs respectively observed within the bulk of the material. A DT of 5&#xB0;C is observed at the exit of the material for both SIMs. This study will look to optimise the discharge process and increase the exit DT to match the DT of bulk material. No DT is observed with the MgSO4 SIM indicating that the moisture content of 12.9 gm-3 is insufficient to initiate a reaction. A larger amount of energy can be theoretically stored within this SIM under the operational conditions of a TSC, however, there is an apparent challenge relating to the energy recover under the proposed discharge cycle of a thermochemical storage system.The energy densities of the SIMs is determined using a Thermal Activity Monitor, and is linked to the input humidity conditions of the experiments undertaken. The results from this study will feed into the development of a building integrated thermochemical storage system currently under development.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Sustainable Energy Technology (SET2016),</journal><publisher>Sustainable Energy Technology (SET2016)</publisher><placeOfPublication>Singapore</placeOfPublication><keywords>Thermal storage, hydrated salts</keywords><publishedDay>30</publishedDay><publishedMonth>9</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-09-30</publishedDate><doi/><url>http://set2016.chbe.nus.edu.sg/confprog.html</url><notes/><college>COLLEGE NANME</college><department>Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MECH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-12T11:08:42.8557233</lastEdited><Created>2017-12-23T21:14:17.7360466</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>Robbie</firstname><surname>Sutton</surname><order>1</order></author><author><firstname>Eifion</firstname><surname>Jewell</surname><orcid>0000-0002-6894-2251</orcid><order>2</order></author><author><firstname>Justin</firstname><surname>Searle</surname><order>3</order></author><author><firstname>Jon</firstname><surname>Elvins</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2019-08-12T11:08:42.8557233 v2 37735 2017-12-23 Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts 13dc152c178d51abfe0634445b0acf07 0000-0002-6894-2251 Eifion Jewell Eifion Jewell true false 2017-12-23 MECH A transpired solar collector (TSC) is a renewable technology developed to harness useful thermal energy from the sun. An example of such technology is Colorcoat Renew SC®, TATA Steels own steel cladding solar collector, being the initial project driver. The energy available over a typical year varies seasonally. Due to seasonal variations, excess solar thermal energy is generated in summer, when the thermal demand of a building is significantly lower, and vice versa in winter. Thermochemical storage methods can be utilised to store the excess thermal energy generated in summer for use in winter when building demand is much greater. The thermochemical storage method under consideration involves the hydration and dehydration of chemical salts, storing and releasing thermal energy via the fully reversible endo/exothermic chemical reaction: salt∙x(H_2 O)+heat ↔salt+x(H_2 O). Chemical salts housed within matrices (SIMs) have been shown to have minimum hysteresis and material degradation over hydration and dehydration cycles. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 are shown to be promising candidates. The maximum air temperature attainable via a TSC (typically 80°C) dictates the lowest hydrated state available for each salt and thus the maximum attainable storage capability, based on the dehydration temperature of the hydrated states of the salt and the associated change in enthalpy. The storage capacities attainable are calculated to be 1204.03 kJ.mol-1, 757.43 kJ.mol-1 and 1492.43 kJ.mol-1 for CaCl2, LiNO3 and MgSO4 respectively, being more than 66% of the overall storage capacity.This work looks to investigate the performance of the SIMs under discharge properties representative of a typical thermal storage system. The thermal output of the SIMs relates to the change of enthalpies associated with the change of hydrated state following the addition of H2O molecules. Experiments are developed to simulate typical discharge properties of a thermochemical storage system; monitoring the variation of temperature and humidity through differing volumes of active SIM, to track the moisture absorption of the SIM and the associated thermal release. An input humidity of 75% at 20°C results in a moisture content of 12.9 gm-3, representative of maximum moisture content of air during winter months; when the discharge cycle occurs. A number of studies are completed by varying the type and amount of active salt within the SIM, along with, material volumes, input flow rate, duration and cyclic efficiency. A larger change in temperature (DT) is expected with higher salt content SIM, due to the overall increase in storage capacity. However, a higher salt content within the SIM does not result in an increases DT, due to the reduction in free space within the SIM constricting air flow. Typically a higher flow rate results in a larger DT attained due to the increase moisture content over a period of time, and thus an increased opportunity for water adsorption of the SIMs. Initial experiments confirm the occurrence of the thermochemical reaction, with a DT of 25°C and 12°C for the CaCl2 and LiNO3 SIMs respectively observed within the bulk of the material. A DT of 5°C is observed at the exit of the material for both SIMs. This study will look to optimise the discharge process and increase the exit DT to match the DT of bulk material. No DT is observed with the MgSO4 SIM indicating that the moisture content of 12.9 gm-3 is insufficient to initiate a reaction. A larger amount of energy can be theoretically stored within this SIM under the operational conditions of a TSC, however, there is an apparent challenge relating to the energy recover under the proposed discharge cycle of a thermochemical storage system.The energy densities of the SIMs is determined using a Thermal Activity Monitor, and is linked to the input humidity conditions of the experiments undertaken. The results from this study will feed into the development of a building integrated thermochemical storage system currently under development. Conference Paper/Proceeding/Abstract Sustainable Energy Technology (SET2016), Sustainable Energy Technology (SET2016) Singapore Thermal storage, hydrated salts 30 9 2016 2016-09-30 http://set2016.chbe.nus.edu.sg/confprog.html COLLEGE NANME Mechanical Engineering COLLEGE CODE MECH Swansea University 2019-08-12T11:08:42.8557233 2017-12-23T21:14:17.7360466 College of Engineering Engineering Robbie Sutton 1 Eifion Jewell 0000-0002-6894-2251 2 Justin Searle 3 Jon Elvins 4
title Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
spellingShingle Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
Eifion Jewell
title_short Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
title_full Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
title_fullStr Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
title_full_unstemmed Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
title_sort Characterising the discharge properties of a thermochemical storage system via the hydration of chemical salts
author_id_str_mv 13dc152c178d51abfe0634445b0acf07
author_id_fullname_str_mv 13dc152c178d51abfe0634445b0acf07_***_Eifion Jewell
author Eifion Jewell
author2 Robbie Sutton
Eifion Jewell
Justin Searle
Jon Elvins
format Conference Paper/Proceeding/Abstract
container_title Sustainable Energy Technology (SET2016),
publishDate 2016
institution Swansea University
publisher Sustainable Energy Technology (SET2016)
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
url http://set2016.chbe.nus.edu.sg/confprog.html
document_store_str 0
active_str 0
description A transpired solar collector (TSC) is a renewable technology developed to harness useful thermal energy from the sun. An example of such technology is Colorcoat Renew SC®, TATA Steels own steel cladding solar collector, being the initial project driver. The energy available over a typical year varies seasonally. Due to seasonal variations, excess solar thermal energy is generated in summer, when the thermal demand of a building is significantly lower, and vice versa in winter. Thermochemical storage methods can be utilised to store the excess thermal energy generated in summer for use in winter when building demand is much greater. The thermochemical storage method under consideration involves the hydration and dehydration of chemical salts, storing and releasing thermal energy via the fully reversible endo/exothermic chemical reaction: salt∙x(H_2 O)+heat ↔salt+x(H_2 O). Chemical salts housed within matrices (SIMs) have been shown to have minimum hysteresis and material degradation over hydration and dehydration cycles. Highly porous vermiculite impregnated with CaCl2, LiNO3 and MgSO4 are shown to be promising candidates. The maximum air temperature attainable via a TSC (typically 80°C) dictates the lowest hydrated state available for each salt and thus the maximum attainable storage capability, based on the dehydration temperature of the hydrated states of the salt and the associated change in enthalpy. The storage capacities attainable are calculated to be 1204.03 kJ.mol-1, 757.43 kJ.mol-1 and 1492.43 kJ.mol-1 for CaCl2, LiNO3 and MgSO4 respectively, being more than 66% of the overall storage capacity.This work looks to investigate the performance of the SIMs under discharge properties representative of a typical thermal storage system. The thermal output of the SIMs relates to the change of enthalpies associated with the change of hydrated state following the addition of H2O molecules. Experiments are developed to simulate typical discharge properties of a thermochemical storage system; monitoring the variation of temperature and humidity through differing volumes of active SIM, to track the moisture absorption of the SIM and the associated thermal release. An input humidity of 75% at 20°C results in a moisture content of 12.9 gm-3, representative of maximum moisture content of air during winter months; when the discharge cycle occurs. A number of studies are completed by varying the type and amount of active salt within the SIM, along with, material volumes, input flow rate, duration and cyclic efficiency. A larger change in temperature (DT) is expected with higher salt content SIM, due to the overall increase in storage capacity. However, a higher salt content within the SIM does not result in an increases DT, due to the reduction in free space within the SIM constricting air flow. Typically a higher flow rate results in a larger DT attained due to the increase moisture content over a period of time, and thus an increased opportunity for water adsorption of the SIMs. Initial experiments confirm the occurrence of the thermochemical reaction, with a DT of 25°C and 12°C for the CaCl2 and LiNO3 SIMs respectively observed within the bulk of the material. A DT of 5°C is observed at the exit of the material for both SIMs. This study will look to optimise the discharge process and increase the exit DT to match the DT of bulk material. No DT is observed with the MgSO4 SIM indicating that the moisture content of 12.9 gm-3 is insufficient to initiate a reaction. A larger amount of energy can be theoretically stored within this SIM under the operational conditions of a TSC, however, there is an apparent challenge relating to the energy recover under the proposed discharge cycle of a thermochemical storage system.The energy densities of the SIMs is determined using a Thermal Activity Monitor, and is linked to the input humidity conditions of the experiments undertaken. The results from this study will feed into the development of a building integrated thermochemical storage system currently under development.
published_date 2016-09-30T03:51:17Z
_version_ 1737026413326761984
score 10.897445