No Cover Image

Journal article 275 views 49 downloads

One Step Facile Synthesis of Novel Anthanthrone Dye Based, Dopant-Free Hole Transporting Material for Efficient and Stable Perovskite Solar Cells / Sagar, Jain; James, Durrant; Trystan, Watson; Wing Chung, Tsoi

Journal of Materials Chemistry C

Swansesa University Authors: Sagar, Jain, James, Durrant, Trystan, Watson, Wing Chung, Tsoi

Check full text

DOI (Published version): 10.1039/C7TC05238C

Abstract

Perovskite solar cell (PSCs) technology has made a tremendous impact in the solar cell community due to their exceptional performance, as the power conversion efficiency (PCE) surged to world record 22% within just last few years. Despite this high efficiency value, the commercialization of PSCs for...

Full description

Published in: Journal of Materials Chemistry C
ISSN: 2050-7526 2050-7534
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa37962
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Perovskite solar cell (PSCs) technology has made a tremendous impact in the solar cell community due to their exceptional performance, as the power conversion efficiency (PCE) surged to world record 22% within just last few years. Despite this high efficiency value, the commercialization of PSCs for large area applications at affordable prices is still pending due to the low stability of devices in ambient atmospheric conditions and a very high cost of the hole transporting materials (HTM) used as the charge transporting layer in such devices. To cope with these challenges, the use of cheap HTMs can play a dual role in terms of lowering the overall cost of the perovskite technology as well as protecting the perovskite layer to achieve higher stability. In order to achieve these goals, various new organic hole transporting materials (HTMs) have been proposed. In this work we use a unique and novel anthanthrone (ANT) dye as a conjugated core building block and an affordable moiety to synthesize a new HTM. The commercially available dye was functionalized with an extended diphenylamine (DPA) end capping group. The newly developed HTM, named DPA-ANT-DPA, was one-step synthesized and used successfully in mesoporous perovskite solar cell devices, achieving a PCE of 11.5% under 1 sun condition with impressive stability. The obtained device efficiency is amongst the highest, as per D-A-D molecular design and low band gap concern. Such kind of low cost HTM based on inexpensive starting precursor anthanthrone dye paves the way for economical and large-scale production of stable perovskite solar cells.
College: College of Engineering