No Cover Image

Journal article 1485 views 546 downloads

The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players

Natalie Brown Orcid Logo, N. Williams, M. Russell, C.J. Cook, L.P. Kilduff, Liam Kilduff Orcid Logo

Journal of Science and Medicine in Sport

Swansea University Authors: Natalie Brown Orcid Logo, Liam Kilduff Orcid Logo

Abstract

ObjectivesThe effects of vascular occlusion on recovery of physiological and neuromuscular markers over 24 h, and hormonal reactivity to subsequent exercise were investigated.DesignCounterbalanced, randomised, crossoverMethodsAcademy rugby players (n = 24) completed six 50-m sprints (five-min inter-...

Full description

Published in: Journal of Science and Medicine in Sport
ISSN: 14402440
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38856
first_indexed 2018-02-23T13:51:23Z
last_indexed 2022-03-15T04:01:11Z
id cronfa38856
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-03-14T16:09:21.4509683</datestamp><bib-version>v2</bib-version><id>38856</id><entry>2018-02-23</entry><title>The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players</title><swanseaauthors><author><sid>22c0647f05ef81cb0ce67977c5efdfe4</sid><ORCID>0000-0003-2369-9881</ORCID><firstname>Natalie</firstname><surname>Brown</surname><name>Natalie Brown</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>972ed9a1dda7a0de20581a0f8350be98</sid><ORCID>0000-0001-9449-2293</ORCID><firstname>Liam</firstname><surname>Kilduff</surname><name>Liam Kilduff</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-23</date><deptcode>EAAS</deptcode><abstract>ObjectivesThe effects of vascular occlusion on recovery of physiological and neuromuscular markers over 24 h, and hormonal reactivity to subsequent exercise were investigated.DesignCounterbalanced, randomised, crossoverMethodsAcademy rugby players (n = 24) completed six 50-m sprints (five-min inter-set recovery) before occlusion cuff application (thighs) and intermittent inflation to 171&#x2013;266 mmHg (Recovery) or 15 mmHg (Con) for 12-min (two sets, three-min repetitions, three-min non-occluded reperfusion). Countermovement jumps, blood (lactate, creatine kinase), saliva (testosterone, cortisol), and perceptual (soreness, recovery) responses were measured before (baseline) and after (post, +2 h, +24 h) sprinting. Saliva was sampled after a 30-min resistance exercise session performed 24 h after sprinting.ResultsAlthough sprinting (total: 40.0 &#xB1; 2.8 s, p = 0.238; average: 6.7 &#xB1; 0.5 s, p = 0.674) influenced creatine kinase (p &lt; 0.001, +457.1 &#xB1; 327.3 &#x3BC;&#xB7;L&#x2212;1, at 24 h), lactate (p &lt; 0.001, 6.8 &#xB1; 2.3 mmol&#xB7;L&#x2212;1, post), testosterone (p &lt; 0.001, &#x2212;55.9 &#xB1; 63.2 pg&#xB7;ml&#x2212;1, at 2 h) and cortisol (p &lt; 0.001, &#x2212;0.3 &#xB1; 0.3 &#x3BC;g&#xB7;dl&#x2212;1, at 2 h) concentrations, countermovement jump power output (p&lt;0.001, &#x2212;409.6 &#xB1; 310.1 W; &#x2212;5.4 &#xB1; 3.4 cm, post), perceived recovery (p&lt;0.001, &#x2212;3.0 &#xB1; 2.3, post), and muscle soreness (p&lt;0.001; 1.5 &#xB1; 1.1, at 24 h), vascular occlusion had no effect (all p&gt;0.05) on recovery. In response to subsequent exercise performed 24 h after vascular occlusion, testosterone increased pre-to-post-exercise (Recovery: p = 0.031, 21.6 &#xB1; 44.9 pg&#xB7;ml&#x2212;1; Con: p = 0.178, 10.6 &#xB1; 36.6 pg&#xB7;ml&#x2212;1) however &#x394;testosterone was not significantly different (p = 0.109) between conditions.ConclusionsVascular occlusion had no effect on physiological or neuromuscular markers 2 h or 24 h after sprinting or in response to a physical stress test.</abstract><type>Journal Article</type><journal>Journal of Science and Medicine in Sport</journal><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>14402440</issnPrint><issnElectronic/><keywords>Occlusion; sprint; hormonal reactivity</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.jsams.2018.02.012</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-03-14T16:09:21.4509683</lastEdited><Created>2018-02-23T09:13:03.2037399</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences</level></path><authors><author><firstname>Natalie</firstname><surname>Brown</surname><orcid>0000-0003-2369-9881</orcid><order>1</order></author><author><firstname>N.</firstname><surname>Williams</surname><order>2</order></author><author><firstname>M.</firstname><surname>Russell</surname><order>3</order></author><author><firstname>C.J.</firstname><surname>Cook</surname><order>4</order></author><author><firstname>L.P.</firstname><surname>Kilduff</surname><order>5</order></author><author><firstname>Liam</firstname><surname>Kilduff</surname><orcid>0000-0001-9449-2293</orcid><order>6</order></author></authors><documents><document><filename>0038856-05032018104246.pdf</filename><originalFilename>williams2018(3).pdf</originalFilename><uploaded>2018-03-05T10:42:46.9200000</uploaded><type>Output</type><contentLength>406336</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-03-03T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-03-14T16:09:21.4509683 v2 38856 2018-02-23 The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players 22c0647f05ef81cb0ce67977c5efdfe4 0000-0003-2369-9881 Natalie Brown Natalie Brown true false 972ed9a1dda7a0de20581a0f8350be98 0000-0001-9449-2293 Liam Kilduff Liam Kilduff true false 2018-02-23 EAAS ObjectivesThe effects of vascular occlusion on recovery of physiological and neuromuscular markers over 24 h, and hormonal reactivity to subsequent exercise were investigated.DesignCounterbalanced, randomised, crossoverMethodsAcademy rugby players (n = 24) completed six 50-m sprints (five-min inter-set recovery) before occlusion cuff application (thighs) and intermittent inflation to 171–266 mmHg (Recovery) or 15 mmHg (Con) for 12-min (two sets, three-min repetitions, three-min non-occluded reperfusion). Countermovement jumps, blood (lactate, creatine kinase), saliva (testosterone, cortisol), and perceptual (soreness, recovery) responses were measured before (baseline) and after (post, +2 h, +24 h) sprinting. Saliva was sampled after a 30-min resistance exercise session performed 24 h after sprinting.ResultsAlthough sprinting (total: 40.0 ± 2.8 s, p = 0.238; average: 6.7 ± 0.5 s, p = 0.674) influenced creatine kinase (p < 0.001, +457.1 ± 327.3 μ·L−1, at 24 h), lactate (p < 0.001, 6.8 ± 2.3 mmol·L−1, post), testosterone (p < 0.001, −55.9 ± 63.2 pg·ml−1, at 2 h) and cortisol (p < 0.001, −0.3 ± 0.3 μg·dl−1, at 2 h) concentrations, countermovement jump power output (p<0.001, −409.6 ± 310.1 W; −5.4 ± 3.4 cm, post), perceived recovery (p<0.001, −3.0 ± 2.3, post), and muscle soreness (p<0.001; 1.5 ± 1.1, at 24 h), vascular occlusion had no effect (all p>0.05) on recovery. In response to subsequent exercise performed 24 h after vascular occlusion, testosterone increased pre-to-post-exercise (Recovery: p = 0.031, 21.6 ± 44.9 pg·ml−1; Con: p = 0.178, 10.6 ± 36.6 pg·ml−1) however Δtestosterone was not significantly different (p = 0.109) between conditions.ConclusionsVascular occlusion had no effect on physiological or neuromuscular markers 2 h or 24 h after sprinting or in response to a physical stress test. Journal Article Journal of Science and Medicine in Sport 14402440 Occlusion; sprint; hormonal reactivity 31 12 2018 2018-12-31 10.1016/j.jsams.2018.02.012 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2022-03-14T16:09:21.4509683 2018-02-23T09:13:03.2037399 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences Natalie Brown 0000-0003-2369-9881 1 N. Williams 2 M. Russell 3 C.J. Cook 4 L.P. Kilduff 5 Liam Kilduff 0000-0001-9449-2293 6 0038856-05032018104246.pdf williams2018(3).pdf 2018-03-05T10:42:46.9200000 Output 406336 application/pdf Accepted Manuscript true 2019-03-03T00:00:00.0000000 true eng
title The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
spellingShingle The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
Natalie Brown
Liam Kilduff
title_short The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
title_full The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
title_fullStr The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
title_full_unstemmed The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
title_sort The effect of lower limb occlusion on recovery following sprint exercise in academy rugby players
author_id_str_mv 22c0647f05ef81cb0ce67977c5efdfe4
972ed9a1dda7a0de20581a0f8350be98
author_id_fullname_str_mv 22c0647f05ef81cb0ce67977c5efdfe4_***_Natalie Brown
972ed9a1dda7a0de20581a0f8350be98_***_Liam Kilduff
author Natalie Brown
Liam Kilduff
author2 Natalie Brown
N. Williams
M. Russell
C.J. Cook
L.P. Kilduff
Liam Kilduff
format Journal article
container_title Journal of Science and Medicine in Sport
publishDate 2018
institution Swansea University
issn 14402440
doi_str_mv 10.1016/j.jsams.2018.02.012
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Sport and Exercise Sciences
document_store_str 1
active_str 0
description ObjectivesThe effects of vascular occlusion on recovery of physiological and neuromuscular markers over 24 h, and hormonal reactivity to subsequent exercise were investigated.DesignCounterbalanced, randomised, crossoverMethodsAcademy rugby players (n = 24) completed six 50-m sprints (five-min inter-set recovery) before occlusion cuff application (thighs) and intermittent inflation to 171–266 mmHg (Recovery) or 15 mmHg (Con) for 12-min (two sets, three-min repetitions, three-min non-occluded reperfusion). Countermovement jumps, blood (lactate, creatine kinase), saliva (testosterone, cortisol), and perceptual (soreness, recovery) responses were measured before (baseline) and after (post, +2 h, +24 h) sprinting. Saliva was sampled after a 30-min resistance exercise session performed 24 h after sprinting.ResultsAlthough sprinting (total: 40.0 ± 2.8 s, p = 0.238; average: 6.7 ± 0.5 s, p = 0.674) influenced creatine kinase (p < 0.001, +457.1 ± 327.3 μ·L−1, at 24 h), lactate (p < 0.001, 6.8 ± 2.3 mmol·L−1, post), testosterone (p < 0.001, −55.9 ± 63.2 pg·ml−1, at 2 h) and cortisol (p < 0.001, −0.3 ± 0.3 μg·dl−1, at 2 h) concentrations, countermovement jump power output (p<0.001, −409.6 ± 310.1 W; −5.4 ± 3.4 cm, post), perceived recovery (p<0.001, −3.0 ± 2.3, post), and muscle soreness (p<0.001; 1.5 ± 1.1, at 24 h), vascular occlusion had no effect (all p>0.05) on recovery. In response to subsequent exercise performed 24 h after vascular occlusion, testosterone increased pre-to-post-exercise (Recovery: p = 0.031, 21.6 ± 44.9 pg·ml−1; Con: p = 0.178, 10.6 ± 36.6 pg·ml−1) however Δtestosterone was not significantly different (p = 0.109) between conditions.ConclusionsVascular occlusion had no effect on physiological or neuromuscular markers 2 h or 24 h after sprinting or in response to a physical stress test.
published_date 2018-12-31T13:24:02Z
_version_ 1822046177482244096
score 11.048453