Journal article 1005 views 220 downloads
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces
Discrete & Continuous Dynamical Systems - B, Volume: 24, Issue: 4, Pages: 1449 - 1467
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
Download (225.47KB) -
PDF | Accepted Manuscript
Download (378.85KB)
DOI (Published version): 10.3934/dcdsb.2018215
Abstract
Based on a recent result in [14], in this paper, we extend it to stochas- tic evolution equations with jumps in Hilbert spaces. This is done via Galerkin type finite-dimensional approximations of the infinite-dimensional stochastic evolution equa- tions with jumps in a manner that one could then lin...
Published in: | Discrete & Continuous Dynamical Systems - B |
---|---|
ISSN: | 1553-524X |
Published: |
American Institute of Mathematical Sciences
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa38878 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-02-26T13:53:51Z |
---|---|
last_indexed |
2019-01-31T19:48:58Z |
id |
cronfa38878 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-01-31T15:04:50.0273337</datestamp><bib-version>v2</bib-version><id>38878</id><entry>2018-02-26</entry><title>On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><ORCID>0000-0003-4568-7013</ORCID><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-26</date><deptcode>SMA</deptcode><abstract>Based on a recent result in [14], in this paper, we extend it to stochas- tic evolution equations with jumps in Hilbert spaces. This is done via Galerkin type finite-dimensional approximations of the infinite-dimensional stochastic evolution equa- tions with jumps in a manner that one could then link the characterisation of the path- independence for finite-dimensional jump type SDEs to that for the infinite-dimensional settings. Our result provides an intrinsic link of infinite-dimensional stochastic evolution equations with jumps to infinite-dimensional (nonlinear) integro-differential equations.</abstract><type>Journal Article</type><journal>Discrete & Continuous Dynamical Systems - B</journal><volume>24</volume><journalNumber>4</journalNumber><paginationStart>1449</paginationStart><paginationEnd>1467</paginationEnd><publisher>American Institute of Mathematical Sciences</publisher><issnPrint>1553-524X</issnPrint><keywords>An Itˆo formula, a Girsanov transformation, path-independence, characterization theorems.</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-04-01</publishedDate><doi>10.3934/dcdsb.2018215</doi><url>http://aimsciences.org/article/doi/10.3934/dcdsb.2018215</url><notes/><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-01-31T15:04:50.0273337</lastEdited><Created>2018-02-26T12:27:31.9512565</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Huijie</firstname><surname>Qiao</surname><order>1</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><orcid>0000-0003-4568-7013</orcid><order>2</order></author></authors><documents><document><filename>0038878-26022018122830.pdf</filename><originalFilename>HuijieQiaoJiang-LunWuPaper2.pdf</originalFilename><uploaded>2018-02-26T12:28:30.6400000</uploaded><type>Output</type><contentLength>229077</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-26T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document><document><filename>0038878-05032018114622.pdf</filename><originalFilename>Qiao-Wu.pdf</originalFilename><uploaded>2018-03-05T11:46:22.3170000</uploaded><type>Output</type><contentLength>339263</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-18T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-01-31T15:04:50.0273337 v2 38878 2018-02-26 On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces dbd67e30d59b0f32592b15b5705af885 0000-0003-4568-7013 Jiang-lun Wu Jiang-lun Wu true false 2018-02-26 SMA Based on a recent result in [14], in this paper, we extend it to stochas- tic evolution equations with jumps in Hilbert spaces. This is done via Galerkin type finite-dimensional approximations of the infinite-dimensional stochastic evolution equa- tions with jumps in a manner that one could then link the characterisation of the path- independence for finite-dimensional jump type SDEs to that for the infinite-dimensional settings. Our result provides an intrinsic link of infinite-dimensional stochastic evolution equations with jumps to infinite-dimensional (nonlinear) integro-differential equations. Journal Article Discrete & Continuous Dynamical Systems - B 24 4 1449 1467 American Institute of Mathematical Sciences 1553-524X An Itˆo formula, a Girsanov transformation, path-independence, characterization theorems. 1 4 2019 2019-04-01 10.3934/dcdsb.2018215 http://aimsciences.org/article/doi/10.3934/dcdsb.2018215 COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2019-01-31T15:04:50.0273337 2018-02-26T12:27:31.9512565 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Huijie Qiao 1 Jiang-lun Wu 0000-0003-4568-7013 2 0038878-26022018122830.pdf HuijieQiaoJiang-LunWuPaper2.pdf 2018-02-26T12:28:30.6400000 Output 229077 application/pdf Accepted Manuscript true 2018-02-26T00:00:00.0000000 true eng 0038878-05032018114622.pdf Qiao-Wu.pdf 2018-03-05T11:46:22.3170000 Output 339263 application/pdf Accepted Manuscript true 2019-05-18T00:00:00.0000000 true eng |
title |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
spellingShingle |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces Jiang-lun Wu |
title_short |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
title_full |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
title_fullStr |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
title_full_unstemmed |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
title_sort |
On the path-independence of the Girsanov transformation for stochastic evolution equations with jumps in Hilbert spaces |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Huijie Qiao Jiang-lun Wu |
format |
Journal article |
container_title |
Discrete & Continuous Dynamical Systems - B |
container_volume |
24 |
container_issue |
4 |
container_start_page |
1449 |
publishDate |
2019 |
institution |
Swansea University |
issn |
1553-524X |
doi_str_mv |
10.3934/dcdsb.2018215 |
publisher |
American Institute of Mathematical Sciences |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
url |
http://aimsciences.org/article/doi/10.3934/dcdsb.2018215 |
document_store_str |
1 |
active_str |
0 |
description |
Based on a recent result in [14], in this paper, we extend it to stochas- tic evolution equations with jumps in Hilbert spaces. This is done via Galerkin type finite-dimensional approximations of the infinite-dimensional stochastic evolution equa- tions with jumps in a manner that one could then link the characterisation of the path- independence for finite-dimensional jump type SDEs to that for the infinite-dimensional settings. Our result provides an intrinsic link of infinite-dimensional stochastic evolution equations with jumps to infinite-dimensional (nonlinear) integro-differential equations. |
published_date |
2019-04-01T03:49:19Z |
_version_ |
1763752394410164224 |
score |
11.035634 |