No Cover Image

Journal article 680 views 173 downloads

MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport

Daniel Escalera-López, Ross Griffin, Mark Isaacs, Karen Wilson, Richard Palmer Orcid Logo, Neil V. Rees

Applied Materials Today, Volume: 11, Pages: 70 - 81

Swansea University Author: Richard Palmer Orcid Logo

  • escaler-lopez2018.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).

    Download (2.96MB)

Abstract

We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone a...

Full description

Published in: Applied Materials Today
ISSN: 2352-9407
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa38882
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-02-26T19:48:22Z
last_indexed 2018-03-01T14:33:33Z
id cronfa38882
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-03-01T09:43:00.0645456</datestamp><bib-version>v2</bib-version><id>38882</id><entry>2018-02-26</entry><title>MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport</title><swanseaauthors><author><sid>6ae369618efc7424d9774377536ea519</sid><ORCID>0000-0001-8728-8083</ORCID><firstname>Richard</firstname><surname>Palmer</surname><name>Richard Palmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-26</date><deptcode>MECH</deptcode><abstract>We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec&#x2212;1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects.</abstract><type>Journal Article</type><journal>Applied Materials Today</journal><volume>11</volume><paginationStart>70</paginationStart><paginationEnd>81</paginationEnd><publisher/><issnPrint>2352-9407</issnPrint><keywords>Transition metal dichalcogenides; Hydrogen evolution; Nanoelectrode array; Plasma etching</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.apmt.2018.01.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MECH</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-01T09:43:00.0645456</lastEdited><Created>2018-02-26T16:45:33.9500972</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Daniel</firstname><surname>Escalera-L&#xF3;pez</surname><order>1</order></author><author><firstname>Ross</firstname><surname>Griffin</surname><order>2</order></author><author><firstname>Mark</firstname><surname>Isaacs</surname><order>3</order></author><author><firstname>Karen</firstname><surname>Wilson</surname><order>4</order></author><author><firstname>Richard</firstname><surname>Palmer</surname><orcid>0000-0001-8728-8083</orcid><order>5</order></author><author><firstname>Neil V.</firstname><surname>Rees</surname><order>6</order></author></authors><documents><document><filename>0038882-26022018164746.pdf</filename><originalFilename>escaler-lopez2018.pdf</originalFilename><uploaded>2018-02-26T16:47:46.6170000</uploaded><type>Output</type><contentLength>3253686</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-26T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-03-01T09:43:00.0645456 v2 38882 2018-02-26 MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport 6ae369618efc7424d9774377536ea519 0000-0001-8728-8083 Richard Palmer Richard Palmer true false 2018-02-26 MECH We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects. Journal Article Applied Materials Today 11 70 81 2352-9407 Transition metal dichalcogenides; Hydrogen evolution; Nanoelectrode array; Plasma etching 31 12 2018 2018-12-31 10.1016/j.apmt.2018.01.006 COLLEGE NANME Mechanical Engineering COLLEGE CODE MECH Swansea University 2018-03-01T09:43:00.0645456 2018-02-26T16:45:33.9500972 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Daniel Escalera-López 1 Ross Griffin 2 Mark Isaacs 3 Karen Wilson 4 Richard Palmer 0000-0001-8728-8083 5 Neil V. Rees 6 0038882-26022018164746.pdf escaler-lopez2018.pdf 2018-02-26T16:47:46.6170000 Output 3253686 application/pdf Version of Record true 2018-02-26T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY). true eng
title MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
spellingShingle MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
Richard Palmer
title_short MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
title_full MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
title_fullStr MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
title_full_unstemmed MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
title_sort MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
author_id_str_mv 6ae369618efc7424d9774377536ea519
author_id_fullname_str_mv 6ae369618efc7424d9774377536ea519_***_Richard Palmer
author Richard Palmer
author2 Daniel Escalera-López
Ross Griffin
Mark Isaacs
Karen Wilson
Richard Palmer
Neil V. Rees
format Journal article
container_title Applied Materials Today
container_volume 11
container_start_page 70
publishDate 2018
institution Swansea University
issn 2352-9407
doi_str_mv 10.1016/j.apmt.2018.01.006
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering
document_store_str 1
active_str 0
description We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects.
published_date 2018-12-31T03:49:19Z
_version_ 1763752394770874368
score 11.012678