Journal article 773 views 197 downloads
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport
Applied Materials Today, Volume: 11, Pages: 70 - 81
Swansea University Author: Richard Palmer
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).
Download (2.96MB)
DOI (Published version): 10.1016/j.apmt.2018.01.006
Abstract
We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone a...
Published in: | Applied Materials Today |
---|---|
ISSN: | 2352-9407 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa38882 |
first_indexed |
2018-02-26T19:48:22Z |
---|---|
last_indexed |
2018-03-01T14:33:33Z |
id |
cronfa38882 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-03-01T09:43:00.0645456</datestamp><bib-version>v2</bib-version><id>38882</id><entry>2018-02-26</entry><title>MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport</title><swanseaauthors><author><sid>6ae369618efc7424d9774377536ea519</sid><ORCID>0000-0001-8728-8083</ORCID><firstname>Richard</firstname><surname>Palmer</surname><name>Richard Palmer</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-02-26</date><deptcode>ACEM</deptcode><abstract>We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects.</abstract><type>Journal Article</type><journal>Applied Materials Today</journal><volume>11</volume><paginationStart>70</paginationStart><paginationEnd>81</paginationEnd><publisher/><issnPrint>2352-9407</issnPrint><keywords>Transition metal dichalcogenides; Hydrogen evolution; Nanoelectrode array; Plasma etching</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-31</publishedDate><doi>10.1016/j.apmt.2018.01.006</doi><url/><notes/><college>COLLEGE NANME</college><department>Aerospace, Civil, Electrical, and Mechanical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>ACEM</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-03-01T09:43:00.0645456</lastEdited><Created>2018-02-26T16:45:33.9500972</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering</level></path><authors><author><firstname>Daniel</firstname><surname>Escalera-López</surname><order>1</order></author><author><firstname>Ross</firstname><surname>Griffin</surname><order>2</order></author><author><firstname>Mark</firstname><surname>Isaacs</surname><order>3</order></author><author><firstname>Karen</firstname><surname>Wilson</surname><order>4</order></author><author><firstname>Richard</firstname><surname>Palmer</surname><orcid>0000-0001-8728-8083</orcid><order>5</order></author><author><firstname>Neil V.</firstname><surname>Rees</surname><order>6</order></author></authors><documents><document><filename>0038882-26022018164746.pdf</filename><originalFilename>escaler-lopez2018.pdf</originalFilename><uploaded>2018-02-26T16:47:46.6170000</uploaded><type>Output</type><contentLength>3253686</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-02-26T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-03-01T09:43:00.0645456 v2 38882 2018-02-26 MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport 6ae369618efc7424d9774377536ea519 0000-0001-8728-8083 Richard Palmer Richard Palmer true false 2018-02-26 ACEM We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects. Journal Article Applied Materials Today 11 70 81 2352-9407 Transition metal dichalcogenides; Hydrogen evolution; Nanoelectrode array; Plasma etching 31 12 2018 2018-12-31 10.1016/j.apmt.2018.01.006 COLLEGE NANME Aerospace, Civil, Electrical, and Mechanical Engineering COLLEGE CODE ACEM Swansea University 2018-03-01T09:43:00.0645456 2018-02-26T16:45:33.9500972 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering Daniel Escalera-López 1 Ross Griffin 2 Mark Isaacs 3 Karen Wilson 4 Richard Palmer 0000-0001-8728-8083 5 Neil V. Rees 6 0038882-26022018164746.pdf escaler-lopez2018.pdf 2018-02-26T16:47:46.6170000 Output 3253686 application/pdf Version of Record true 2018-02-26T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY). true eng |
title |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
spellingShingle |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport Richard Palmer |
title_short |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
title_full |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
title_fullStr |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
title_full_unstemmed |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
title_sort |
MoS 2 and WS 2 nanocone arrays: Impact of surface topography on the hydrogen evolution electrocatalytic activity and mass transport |
author_id_str_mv |
6ae369618efc7424d9774377536ea519 |
author_id_fullname_str_mv |
6ae369618efc7424d9774377536ea519_***_Richard Palmer |
author |
Richard Palmer |
author2 |
Daniel Escalera-López Ross Griffin Mark Isaacs Karen Wilson Richard Palmer Neil V. Rees |
format |
Journal article |
container_title |
Applied Materials Today |
container_volume |
11 |
container_start_page |
70 |
publishDate |
2018 |
institution |
Swansea University |
issn |
2352-9407 |
doi_str_mv |
10.1016/j.apmt.2018.01.006 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Mechanical Engineering |
document_store_str |
1 |
active_str |
0 |
description |
We report the fabrication and electrochemical study of edge-abundant transition metal dichalcogenide (TMD) nanocone arrays. Time-dependent etching by sequential use of isotropic O2 and anisotropic SF6/C4F8 plasmas on nanosphere monolayer-modified TMD crystals results in very high coverage nanocone array structures with tunable aspect ratios and interspacings. Electrochemical characterization of these arrays via the hydrogen evolution reaction (HER), using a low proton concentration electrolyte (2 mM HClO4, 0.1 M NaClO4) to reveal morphology-dependent mass transport features at the proton diffusion-controlled region, show significant changes in electrocatalytic behaviour at both WS2 and MoS2: notably onset potential shifts of 100 and 200 mV, and Tafel slope decreases of 50 and 120 mV dec−1 respectively. These improvements vary according to the geometry of the arrays and the availability of catalytic edge sites, and thus the observed electrochemical behaviour can be rationalized via kinetic and mass transport effects. |
published_date |
2018-12-31T19:33:05Z |
_version_ |
1822069395738853376 |
score |
11.048302 |