No Cover Image

Journal article 1773 views 197 downloads

Characterization of the 1S–2S transition in antihydrogen

M. Ahmadi, B. X. R. Alves, Christopher Baker Orcid Logo, W. Bertsche, A. Capra, C. Carruth, C. L. Cesar, Michael Charlton, S. Cohen, R. Collister, Stefan Eriksson Orcid Logo, A. Evans, N. Evetts, J. Fajans, T. Friesen, M. C. Fujiwara, D. R. Gill, J. S. Hangst, W. N. Hardy, M. E. Hayden, Aled Isaac Orcid Logo, M. A. Johnson, J. M. Jones, S. A. Jones, S. Jonsell, A. Khramov, P. Knapp, L. Kurchaninov, Niels Madsen Orcid Logo, D. Maxwell, J. T. K. McKenna, S. Menary, T. Momose, J. J. Munich, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, R. L. Sacramento, M. Sameed, E. Sarid, D. M. Silveira, G. Stutter, C. So, T. D. Tharp, R. I. Thompson, Dirk van der Werf Orcid Logo, J. S. Wurtele

Nature, Volume: 557, Issue: 7703, Pages: 71 - 75

Swansea University Authors: Christopher Baker Orcid Logo, Michael Charlton, Stefan Eriksson Orcid Logo, Aled Isaac Orcid Logo, Niels Madsen Orcid Logo, Dirk van der Werf Orcid Logo

  • 39315.pdf

    PDF | Version of Record

    This article is licensed under a Creative Commons Attribution 4.0 International License.

    Download (1.74MB)

Abstract

In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of an...

Full description

Published in: Nature
ISSN: 0028-0836 1476-4687
Published: Springer Science and Business Media LLC 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39315
first_indexed 2018-04-05T13:37:15Z
last_indexed 2023-01-11T14:15:23Z
id cronfa39315
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-11-09T15:42:56.8734425</datestamp><bib-version>v2</bib-version><id>39315</id><entry>2018-04-05</entry><title>Characterization of the 1S&#x2013;2S transition in antihydrogen</title><swanseaauthors><author><sid>0c72afb63bd0c6089fc5b60bd096103e</sid><ORCID>0000-0002-9448-8419</ORCID><firstname>Christopher</firstname><surname>Baker</surname><name>Christopher Baker</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d9099cdd0f182eb9a1c8fc36ed94f53f</sid><firstname>Michael</firstname><surname>Charlton</surname><name>Michael Charlton</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>785cbd474febb1bfa9c0e14abaf9c4a8</sid><ORCID>0000-0002-5390-1879</ORCID><firstname>Stefan</firstname><surname>Eriksson</surname><name>Stefan Eriksson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>06d7ed42719ef7bb697cf780c63e26f0</sid><ORCID>0000-0002-7813-1903</ORCID><firstname>Aled</firstname><surname>Isaac</surname><name>Aled Isaac</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e348e4d768ee19c1d0c68ce3a66d6303</sid><ORCID>0000-0002-7372-0784</ORCID><firstname>Niels</firstname><surname>Madsen</surname><name>Niels Madsen</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>4a4149ebce588e432f310f4ab44dd82a</sid><ORCID>0000-0001-5436-5214</ORCID><firstname>Dirk</firstname><surname>van der Werf</surname><name>Dirk van der Werf</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-05</date><deptcode>EAAS</deptcode><abstract>In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles&#x2014;antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter, including tests of fundamental symmetries such as charge&#x2013;parity and charge&#x2013;parity&#x2013;time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart&#x2014;the antihydrogen atom&#x2014;of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S&#x2013;2S transition was recently observed8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5&#x2009;&#xD7;&#x2009;10^15 hertz. This is consistent with charge&#x2013;parity&#x2013;time invariance at a relative precision of 2&#x2009;&#xD7;&#x2009;10^&#x2212;12&#x2014;two orders of magnitude more precise than the previous determination8&#x2014;corresponding to an absolute energy sensitivity of 2&#x2009;&#xD7;&#x2009;10^&#x2212;20 GeV.</abstract><type>Journal Article</type><journal>Nature</journal><volume>557</volume><journalNumber>7703</journalNumber><paginationStart>71</paginationStart><paginationEnd>75</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0028-0836</issnPrint><issnElectronic>1476-4687</issnElectronic><keywords>Antihydrogen, Fundamental Symmetries, CPT, Hydrogen, 1S-2S</keywords><publishedDay>3</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-05-03</publishedDate><doi>10.1038/s41586-018-0017-2</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>All authors are members of the ALPHA Collaboration. This work was supported by: the European Research Council through its Advanced Grant programme (J.S.H.); CNPq, FAPERJ, RENAFAE (Brazil); NSERC, NRC/TRIUMF, EHPDS/EHDRS, FQRNT (Canada); FNU (Nice Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC, the Royal Society and the Leverhulme Trust (UK); DOE, NSF (USA); and VR (Sweden).</funders><projectreference/><lastEdited>2022-11-09T15:42:56.8734425</lastEdited><Created>2018-04-05T07:28:54.4662967</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>M.</firstname><surname>Ahmadi</surname><order>1</order></author><author><firstname>B. X. R.</firstname><surname>Alves</surname><order>2</order></author><author><firstname>Christopher</firstname><surname>Baker</surname><orcid>0000-0002-9448-8419</orcid><order>3</order></author><author><firstname>W.</firstname><surname>Bertsche</surname><order>4</order></author><author><firstname>A.</firstname><surname>Capra</surname><order>5</order></author><author><firstname>C.</firstname><surname>Carruth</surname><order>6</order></author><author><firstname>C. L.</firstname><surname>Cesar</surname><order>7</order></author><author><firstname>Michael</firstname><surname>Charlton</surname><order>8</order></author><author><firstname>S.</firstname><surname>Cohen</surname><order>9</order></author><author><firstname>R.</firstname><surname>Collister</surname><order>10</order></author><author><firstname>Stefan</firstname><surname>Eriksson</surname><orcid>0000-0002-5390-1879</orcid><order>11</order></author><author><firstname>A.</firstname><surname>Evans</surname><order>12</order></author><author><firstname>N.</firstname><surname>Evetts</surname><order>13</order></author><author><firstname>J.</firstname><surname>Fajans</surname><order>14</order></author><author><firstname>T.</firstname><surname>Friesen</surname><order>15</order></author><author><firstname>M. C.</firstname><surname>Fujiwara</surname><order>16</order></author><author><firstname>D. R.</firstname><surname>Gill</surname><order>17</order></author><author><firstname>J. S.</firstname><surname>Hangst</surname><order>18</order></author><author><firstname>W. N.</firstname><surname>Hardy</surname><order>19</order></author><author><firstname>M. E.</firstname><surname>Hayden</surname><order>20</order></author><author><firstname>Aled</firstname><surname>Isaac</surname><orcid>0000-0002-7813-1903</orcid><order>21</order></author><author><firstname>M. A.</firstname><surname>Johnson</surname><order>22</order></author><author><firstname>J. M.</firstname><surname>Jones</surname><order>23</order></author><author><firstname>S. A.</firstname><surname>Jones</surname><order>24</order></author><author><firstname>S.</firstname><surname>Jonsell</surname><order>25</order></author><author><firstname>A.</firstname><surname>Khramov</surname><order>26</order></author><author><firstname>P.</firstname><surname>Knapp</surname><order>27</order></author><author><firstname>L.</firstname><surname>Kurchaninov</surname><order>28</order></author><author><firstname>Niels</firstname><surname>Madsen</surname><orcid>0000-0002-7372-0784</orcid><order>29</order></author><author><firstname>D.</firstname><surname>Maxwell</surname><order>30</order></author><author><firstname>J. T. K.</firstname><surname>McKenna</surname><order>31</order></author><author><firstname>S.</firstname><surname>Menary</surname><order>32</order></author><author><firstname>T.</firstname><surname>Momose</surname><order>33</order></author><author><firstname>J. J.</firstname><surname>Munich</surname><order>34</order></author><author><firstname>K.</firstname><surname>Olchanski</surname><order>35</order></author><author><firstname>A.</firstname><surname>Olin</surname><order>36</order></author><author><firstname>P.</firstname><surname>Pusa</surname><order>37</order></author><author><firstname>C. &#xD8;.</firstname><surname>Rasmussen</surname><order>38</order></author><author><firstname>F.</firstname><surname>Robicheaux</surname><order>39</order></author><author><firstname>R. L.</firstname><surname>Sacramento</surname><order>40</order></author><author><firstname>M.</firstname><surname>Sameed</surname><order>41</order></author><author><firstname>E.</firstname><surname>Sarid</surname><order>42</order></author><author><firstname>D. M.</firstname><surname>Silveira</surname><order>43</order></author><author><firstname>G.</firstname><surname>Stutter</surname><order>44</order></author><author><firstname>C.</firstname><surname>So</surname><order>45</order></author><author><firstname>T. D.</firstname><surname>Tharp</surname><order>46</order></author><author><firstname>R. I.</firstname><surname>Thompson</surname><order>47</order></author><author><firstname>Dirk</firstname><surname>van der Werf</surname><orcid>0000-0001-5436-5214</orcid><order>48</order></author><author><firstname>J. S.</firstname><surname>Wurtele</surname><order>49</order></author></authors><documents><document><filename>0039315-25042018111058.pdf</filename><originalFilename>39315.pdf</originalFilename><uploaded>2018-04-25T11:10:58.2500000</uploaded><type>Output</type><contentLength>1945898</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>This article is licensed under a Creative Commons Attribution 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2022-11-09T15:42:56.8734425 v2 39315 2018-04-05 Characterization of the 1S–2S transition in antihydrogen 0c72afb63bd0c6089fc5b60bd096103e 0000-0002-9448-8419 Christopher Baker Christopher Baker true false d9099cdd0f182eb9a1c8fc36ed94f53f Michael Charlton Michael Charlton true false 785cbd474febb1bfa9c0e14abaf9c4a8 0000-0002-5390-1879 Stefan Eriksson Stefan Eriksson true false 06d7ed42719ef7bb697cf780c63e26f0 0000-0002-7813-1903 Aled Isaac Aled Isaac true false e348e4d768ee19c1d0c68ce3a66d6303 0000-0002-7372-0784 Niels Madsen Niels Madsen true false 4a4149ebce588e432f310f4ab44dd82a 0000-0001-5436-5214 Dirk van der Werf Dirk van der Werf true false 2018-04-05 EAAS In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10^15 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10^−12—two orders of magnitude more precise than the previous determination8—corresponding to an absolute energy sensitivity of 2 × 10^−20 GeV. Journal Article Nature 557 7703 71 75 Springer Science and Business Media LLC 0028-0836 1476-4687 Antihydrogen, Fundamental Symmetries, CPT, Hydrogen, 1S-2S 3 5 2018 2018-05-03 10.1038/s41586-018-0017-2 COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University All authors are members of the ALPHA Collaboration. This work was supported by: the European Research Council through its Advanced Grant programme (J.S.H.); CNPq, FAPERJ, RENAFAE (Brazil); NSERC, NRC/TRIUMF, EHPDS/EHDRS, FQRNT (Canada); FNU (Nice Centre), Carlsberg Foundation (Denmark); ISF (Israel); STFC, EPSRC, the Royal Society and the Leverhulme Trust (UK); DOE, NSF (USA); and VR (Sweden). 2022-11-09T15:42:56.8734425 2018-04-05T07:28:54.4662967 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics M. Ahmadi 1 B. X. R. Alves 2 Christopher Baker 0000-0002-9448-8419 3 W. Bertsche 4 A. Capra 5 C. Carruth 6 C. L. Cesar 7 Michael Charlton 8 S. Cohen 9 R. Collister 10 Stefan Eriksson 0000-0002-5390-1879 11 A. Evans 12 N. Evetts 13 J. Fajans 14 T. Friesen 15 M. C. Fujiwara 16 D. R. Gill 17 J. S. Hangst 18 W. N. Hardy 19 M. E. Hayden 20 Aled Isaac 0000-0002-7813-1903 21 M. A. Johnson 22 J. M. Jones 23 S. A. Jones 24 S. Jonsell 25 A. Khramov 26 P. Knapp 27 L. Kurchaninov 28 Niels Madsen 0000-0002-7372-0784 29 D. Maxwell 30 J. T. K. McKenna 31 S. Menary 32 T. Momose 33 J. J. Munich 34 K. Olchanski 35 A. Olin 36 P. Pusa 37 C. Ø. Rasmussen 38 F. Robicheaux 39 R. L. Sacramento 40 M. Sameed 41 E. Sarid 42 D. M. Silveira 43 G. Stutter 44 C. So 45 T. D. Tharp 46 R. I. Thompson 47 Dirk van der Werf 0000-0001-5436-5214 48 J. S. Wurtele 49 0039315-25042018111058.pdf 39315.pdf 2018-04-25T11:10:58.2500000 Output 1945898 application/pdf Version of Record true This article is licensed under a Creative Commons Attribution 4.0 International License. true eng http://creativecommons.org/licenses/by/4.0/
title Characterization of the 1S–2S transition in antihydrogen
spellingShingle Characterization of the 1S–2S transition in antihydrogen
Christopher Baker
Michael Charlton
Stefan Eriksson
Aled Isaac
Niels Madsen
Dirk van der Werf
title_short Characterization of the 1S–2S transition in antihydrogen
title_full Characterization of the 1S–2S transition in antihydrogen
title_fullStr Characterization of the 1S–2S transition in antihydrogen
title_full_unstemmed Characterization of the 1S–2S transition in antihydrogen
title_sort Characterization of the 1S–2S transition in antihydrogen
author_id_str_mv 0c72afb63bd0c6089fc5b60bd096103e
d9099cdd0f182eb9a1c8fc36ed94f53f
785cbd474febb1bfa9c0e14abaf9c4a8
06d7ed42719ef7bb697cf780c63e26f0
e348e4d768ee19c1d0c68ce3a66d6303
4a4149ebce588e432f310f4ab44dd82a
author_id_fullname_str_mv 0c72afb63bd0c6089fc5b60bd096103e_***_Christopher Baker
d9099cdd0f182eb9a1c8fc36ed94f53f_***_Michael Charlton
785cbd474febb1bfa9c0e14abaf9c4a8_***_Stefan Eriksson
06d7ed42719ef7bb697cf780c63e26f0_***_Aled Isaac
e348e4d768ee19c1d0c68ce3a66d6303_***_Niels Madsen
4a4149ebce588e432f310f4ab44dd82a_***_Dirk van der Werf
author Christopher Baker
Michael Charlton
Stefan Eriksson
Aled Isaac
Niels Madsen
Dirk van der Werf
author2 M. Ahmadi
B. X. R. Alves
Christopher Baker
W. Bertsche
A. Capra
C. Carruth
C. L. Cesar
Michael Charlton
S. Cohen
R. Collister
Stefan Eriksson
A. Evans
N. Evetts
J. Fajans
T. Friesen
M. C. Fujiwara
D. R. Gill
J. S. Hangst
W. N. Hardy
M. E. Hayden
Aled Isaac
M. A. Johnson
J. M. Jones
S. A. Jones
S. Jonsell
A. Khramov
P. Knapp
L. Kurchaninov
Niels Madsen
D. Maxwell
J. T. K. McKenna
S. Menary
T. Momose
J. J. Munich
K. Olchanski
A. Olin
P. Pusa
C. Ø. Rasmussen
F. Robicheaux
R. L. Sacramento
M. Sameed
E. Sarid
D. M. Silveira
G. Stutter
C. So
T. D. Tharp
R. I. Thompson
Dirk van der Werf
J. S. Wurtele
format Journal article
container_title Nature
container_volume 557
container_issue 7703
container_start_page 71
publishDate 2018
institution Swansea University
issn 0028-0836
1476-4687
doi_str_mv 10.1038/s41586-018-0017-2
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description In 1928, Dirac published an equation that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles—antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter, including tests of fundamental symmetries such as charge–parity and charge–parity–time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart—the antihydrogen atom—of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S–2S transition was recently observed8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10^15 hertz. This is consistent with charge–parity–time invariance at a relative precision of 2 × 10^−12—two orders of magnitude more precise than the previous determination8—corresponding to an absolute energy sensitivity of 2 × 10^−20 GeV.
published_date 2018-05-03T13:21:09Z
_version_ 1821955399202373632
score 11.048149