Conference Paper/Proceeding/Abstract 897 views 227 downloads
Manifold Modeling of the Beating Heart Motion
Communications in Computer and Information Science, Volume: 894, Pages: 229 - 238
Swansea University Authors: Xianghua Xie , Adeline Paiement
-
PDF | Accepted Manuscript
Download (1.5MB)
DOI (Published version): 10.1007/978-3-319-95921-4_22
Abstract
Modeling the heart motion has important applications for diagnosis and intervention. We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with va...
Published in: | Communications in Computer and Information Science |
---|---|
ISBN: | 9783319959207 9783319959214 |
ISSN: | 1865-0929 1865-0937 |
Published: |
Cham
Springer International Publishing
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa39317 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2018-04-05T13:37:15Z |
---|---|
last_indexed |
2022-06-17T02:55:27Z |
id |
cronfa39317 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-06-16T16:06:09.5496003</datestamp><bib-version>v2</bib-version><id>39317</id><entry>2018-04-05</entry><title>Manifold Modeling of the Beating Heart Motion</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>f50adf4186d930e3a2a0f9a6d643cf53</sid><firstname>Adeline</firstname><surname>Paiement</surname><name>Adeline Paiement</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-05</date><deptcode>SCS</deptcode><abstract>Modeling the heart motion has important applications for diagnosis and intervention. We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Communications in Computer and Information Science</journal><volume>894</volume><journalNumber/><paginationStart>229</paginationStart><paginationEnd>238</paginationEnd><publisher>Springer International Publishing</publisher><placeOfPublication>Cham</placeOfPublication><isbnPrint>9783319959207</isbnPrint><isbnElectronic>9783319959214</isbnElectronic><issnPrint>1865-0929</issnPrint><issnElectronic>1865-0937</issnElectronic><keywords>Beating Heart Motion; Manifold Model; Manifold Types; Manifold Learning Methods; Cardiac Cycle Phase</keywords><publishedDay>21</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-08-21</publishedDate><doi>10.1007/978-3-319-95921-4_22</doi><url/><notes/><college>COLLEGE NANME</college><department>Computer Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SCS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2022-06-16T16:06:09.5496003</lastEdited><Created>2018-04-05T09:43:54.0028052</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Paul</firstname><surname>Stroe</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Adeline</firstname><surname>Paiement</surname><order>3</order></author></authors><documents><document><filename>0039317-05042018100509.pdf</filename><originalFilename>manifold-modeling-beating.pdf</originalFilename><uploaded>2018-04-05T10:05:09.4330000</uploaded><type>Output</type><contentLength>1549153</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-08-21T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-06-16T16:06:09.5496003 v2 39317 2018-04-05 Manifold Modeling of the Beating Heart Motion b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false f50adf4186d930e3a2a0f9a6d643cf53 Adeline Paiement Adeline Paiement true false 2018-04-05 SCS Modeling the heart motion has important applications for diagnosis and intervention. We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types. Conference Paper/Proceeding/Abstract Communications in Computer and Information Science 894 229 238 Springer International Publishing Cham 9783319959207 9783319959214 1865-0929 1865-0937 Beating Heart Motion; Manifold Model; Manifold Types; Manifold Learning Methods; Cardiac Cycle Phase 21 8 2018 2018-08-21 10.1007/978-3-319-95921-4_22 COLLEGE NANME Computer Science COLLEGE CODE SCS Swansea University 2022-06-16T16:06:09.5496003 2018-04-05T09:43:54.0028052 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Paul Stroe 1 Xianghua Xie 0000-0002-2701-8660 2 Adeline Paiement 3 0039317-05042018100509.pdf manifold-modeling-beating.pdf 2018-04-05T10:05:09.4330000 Output 1549153 application/pdf Accepted Manuscript true 2019-08-21T00:00:00.0000000 true eng |
title |
Manifold Modeling of the Beating Heart Motion |
spellingShingle |
Manifold Modeling of the Beating Heart Motion Xianghua Xie Adeline Paiement |
title_short |
Manifold Modeling of the Beating Heart Motion |
title_full |
Manifold Modeling of the Beating Heart Motion |
title_fullStr |
Manifold Modeling of the Beating Heart Motion |
title_full_unstemmed |
Manifold Modeling of the Beating Heart Motion |
title_sort |
Manifold Modeling of the Beating Heart Motion |
author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 f50adf4186d930e3a2a0f9a6d643cf53 |
author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie f50adf4186d930e3a2a0f9a6d643cf53_***_Adeline Paiement |
author |
Xianghua Xie Adeline Paiement |
author2 |
Paul Stroe Xianghua Xie Adeline Paiement |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Communications in Computer and Information Science |
container_volume |
894 |
container_start_page |
229 |
publishDate |
2018 |
institution |
Swansea University |
isbn |
9783319959207 9783319959214 |
issn |
1865-0929 1865-0937 |
doi_str_mv |
10.1007/978-3-319-95921-4_22 |
publisher |
Springer International Publishing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
document_store_str |
1 |
active_str |
0 |
description |
Modeling the heart motion has important applications for diagnosis and intervention. We present a new method for modeling the deformation of the myocardium in the cardiac cycle. Our approach is based on manifold learning to build a representation of shape variation across time. We experiment with various manifold types to identify the best manifold method, and with real patient data extracted from cine MRIs. We obtain a representation, common to all subjects, that can discriminate cardiac cycle phases and heart function types. |
published_date |
2018-08-21T03:49:55Z |
_version_ |
1763752432573087744 |
score |
11.035634 |