No Cover Image

Journal article 388 views 40 downloads

Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters / Lacey Arron, Lyons Jane, Akbari Ashley, L Samantha, M Angharad, Fonferko-Shadrach Beata, Pickrell Owen, I Mark, A Ronan, V David, M Rod, Ashley Akbari

International Journal for Population Data Science, Volume: 1, Issue: 1

Swansea University Author: Ashley Akbari

  • 39437.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND).

    Download (234.98KB)
Published in: International Journal for Population Data Science
ISSN: 2399-4908
Published: 2017
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39437
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-04-17T12:21:55Z
last_indexed 2018-05-11T19:29:27Z
id cronfa39437
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-05-11T15:34:42.1454558</datestamp><bib-version>v2</bib-version><id>39437</id><entry>2018-04-17</entry><title>Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-04-17</date><deptcode>HDAT</deptcode><abstract/><type>Journal Article</type><journal>International Journal for Population Data Science</journal><volume>1</volume><journalNumber>1</journalNumber><publisher/><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>19</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2017</publishedYear><publishedDate>2017-04-19</publishedDate><doi>10.23889/ijpds.v1i1.354</doi><url/><notes/><college>COLLEGE NANME</college><department>Health Data Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HDAT</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-05-11T15:34:42.1454558</lastEdited><Created>2018-04-17T10:49:38.0833506</Created><path><level id="1">Swansea University Medical School</level><level id="2">Swansea University Medical School</level></path><authors><author><firstname>Lacey</firstname><surname>Arron</surname><order>1</order></author><author><firstname>Lyons</firstname><surname>Jane</surname><order>2</order></author><author><firstname>Akbari</firstname><surname>Ashley</surname><order>3</order></author><author><firstname>L</firstname><surname>Samantha</surname><order>4</order></author><author><firstname>M</firstname><surname>Angharad</surname><order>5</order></author><author><firstname>Fonferko-Shadrach</firstname><surname>Beata</surname><order>6</order></author><author><firstname>Pickrell</firstname><surname>Owen</surname><order>7</order></author><author><firstname>I</firstname><surname>Mark</surname><order>8</order></author><author><firstname>A</firstname><surname>Ronan</surname><order>9</order></author><author><firstname>V</firstname><surname>David</surname><order>10</order></author><author><firstname>M</firstname><surname>Rod</surname><order>11</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>12</order></author></authors><documents><document><filename>0039437-11052018153310.pdf</filename><originalFilename>39437.pdf</originalFilename><uploaded>2018-05-11T15:33:10.6370000</uploaded><type>Output</type><contentLength>211847</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2018-05-11T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-05-11T15:34:42.1454558 v2 39437 2018-04-17 Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2018-04-17 HDAT Journal Article International Journal for Population Data Science 1 1 2399-4908 19 4 2017 2017-04-19 10.23889/ijpds.v1i1.354 COLLEGE NANME Health Data Science COLLEGE CODE HDAT Swansea University 2018-05-11T15:34:42.1454558 2018-04-17T10:49:38.0833506 Swansea University Medical School Swansea University Medical School Lacey Arron 1 Lyons Jane 2 Akbari Ashley 3 L Samantha 4 M Angharad 5 Fonferko-Shadrach Beata 6 Pickrell Owen 7 I Mark 8 A Ronan 9 V David 10 M Rod 11 Ashley Akbari 0000-0003-0814-0801 12 0039437-11052018153310.pdf 39437.pdf 2018-05-11T15:33:10.6370000 Output 211847 application/pdf Version of Record true 2018-05-11T00:00:00.0000000 Released under the terms of a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND). true eng
title Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
spellingShingle Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
Ashley, Akbari
title_short Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
title_full Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
title_fullStr Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
title_full_unstemmed Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
title_sort Codifying unstructured data: A Natural Language Processing approach to extract rich data from clinical letters
author_id_str_mv aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley, Akbari
author Ashley, Akbari
author2 Lacey Arron
Lyons Jane
Akbari Ashley
L Samantha
M Angharad
Fonferko-Shadrach Beata
Pickrell Owen
I Mark
A Ronan
V David
M Rod
Ashley Akbari
format Journal article
container_title International Journal for Population Data Science
container_volume 1
container_issue 1
publishDate 2017
institution Swansea University
issn 2399-4908
doi_str_mv 10.23889/ijpds.v1i1.354
college_str Swansea University Medical School
hierarchytype
hierarchy_top_id swanseauniversitymedicalschool
hierarchy_top_title Swansea University Medical School
hierarchy_parent_id swanseauniversitymedicalschool
hierarchy_parent_title Swansea University Medical School
department_str Swansea University Medical School{{{_:::_}}}Swansea University Medical School{{{_:::_}}}Swansea University Medical School
document_store_str 1
active_str 0
published_date 2017-04-19T04:00:55Z
_version_ 1714377778343706624
score 10.830003