No Cover Image

Journal article 424 views 79 downloads

Transient thermal finite element analysis of CFC–Cu ITER monoblock using X-ray tomography data

Llion Evans Orcid Logo, L. Margetts, V. Casalegno, L.M. Lever, J. Bushell, T. Lowe, A. Wallwork, P. Young, A. Lindemann, M. Schmidt, P.M. Mummery

Fusion Engineering and Design, Volume: 100, Pages: 100 - 111

Swansea University Author: Llion Evans Orcid Logo

  • FusEngDes_Evans2015.pdf

    PDF | Version of Record

    © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

    Download (2.7MB)

Abstract

The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography d...

Full description

Published in: Fusion Engineering and Design
ISSN: 0920-3796
Published: 2015
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa39974
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: The thermal performance of a carbon fibre composite-copper monoblock, a sub-component of a fusion reactor divertor, was investigated by finite element analysis. High-accuracy simulations were created using an emerging technique, image-based finite element modelling, which converts X-ray tomography data into micro-structurally faithful models, capturing details such as manufacturing defects. For validation, a case study was performed where the thermal analysis by laser flash of a carbon fibre composite-copper disc was simulated such that computational and experimental results could be compared directly. Results showed that a high resolution image-based simulation (102 million elements of 32 μm width) provided increased accuracy over a low resolution image-based simulation (0.6 million elements of 194 μm width) and idealised computer aided design simulations. Using this technique to analyse a monoblock mock-up, it was possible to detect and quantify the effects of debonding regions at the carbon fibre composite-copper interface likely to impact both component performance and expected lifetime. These features would not have been accounted for in idealised computer aided design simulations.
Keywords: X-ray tomography, Finite element analysis, Image-based modelling, Thermal conductivity, Laser flash, Joining
Start Page: 100
End Page: 111