No Cover Image

Journal article 222 views 23 downloads

An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH 3 NH 3 ) 3 Bi 2 I 9 bismuth-based perovskite solar cells for improved performance and long-term stability / Trystan, Watson; Matthew, Davies; James, Durrant; Wing Chung, Tsoi; Catherine, De Castro; Sagar, Jain

Nano Energy, Volume: 49, Pages: 614 - 624

Swansesa University Authors: Trystan, Watson, Matthew, Davies, James, Durrant, Wing Chung, Tsoi, Catherine, De Castro, Sagar, Jain

Abstract

We present a controlled, stepwise formation of methylammonium bismuth iodide (CH3NH3)3Bi2I9 perovskite films prepared via the vapour assisted solution process (VASP) by exposing BiI3 films to CH3NH3I (MAI) vapours for different reaction times, (CH3NH3)3Bi2I9 semiconductor films with tunable optoelec...

Full description

Published in: Nano Energy
ISSN: 22112855
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40033
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: We present a controlled, stepwise formation of methylammonium bismuth iodide (CH3NH3)3Bi2I9 perovskite films prepared via the vapour assisted solution process (VASP) by exposing BiI3 films to CH3NH3I (MAI) vapours for different reaction times, (CH3NH3)3Bi2I9 semiconductor films with tunable optoelectronic properties are obtained. Solar cells prepared on mesoporous TiO2 substrates yielded hysteresis-free efficiencies upto 3.17% with good reproducibility. The good performance is attributed mainly to the homogeneous surface coverage, improved stoichiometry, reduced metallic content in the bulk, and desired optoelectronic properties of the absorbing material. In addition, solar cells prepared using pure BiI3 films without MAI exposure achieved a power conversion efficiency of 0.34%. The non-encapsulated (CH3NH3)3Bi2I9 devices were found to be stable for as long as 60 days with only 0.1% drop in efficiency. This controlled formation of (CH3NH3)3Bi2I9 perovskite films highlights the benefit of the VASP technique to optimize material stoichiometry, morphology, solar cell performance, and long-term durability.
Keywords: Vapour assisted solution process (VASP); Lead free perovskite; (CH3NH3)3Bi2I9; Morphological tailoring; High resolution X-ray photoelectron (HAXPES) spectroscopy
Start Page: 614
End Page: 624