No Cover Image

Journal article 809 views 159 downloads

Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells

Daniel Bryant, Nicholas Aristidou, Sebastian Pont, Irene Sanchez-Molina, Thana Chotchunangatchaval, Scot Wheeler, James Durrant Orcid Logo, Saif A. Haque

Energy & Environmental Science, Volume: 9, Issue: 5, Pages: 1655 - 1660

Swansea University Authors: Daniel Bryant, James Durrant Orcid Logo

  • 40519.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (2.27MB)

Check full text

DOI (Published version): 10.1039/c6ee00409a

Abstract

Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions. When exposed to both light and dry air, unencapsulated MeNH3PbI3 solar cells rapidly...

Full description

Published in: Energy & Environmental Science
ISSN: 1754-5692 1754-5706
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40519
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions. When exposed to both light and dry air, unencapsulated MeNH3PbI3 solar cells rapidly degrade on timescales of minutes to a few hours. This rapid degradation is also observed under electrically bias driven current flow in the dark in the presence of O2. In contrast, significantly slower degradation is observed when the MeNH3PbI3 devices are exposed to moisture alone (e.g. 85% relative humidity in N2). We show that this light and oxygen induced degradation can be slowed down by the use of interlayers that are able to remove electrons from the perovskite film before they can react with oxygen to form O2−. These observations demonstrate that the operational stability of electronic and optoelectronic devices that exploit the electron transporting properties of MeNH3PbI3 will be critically dependent upon the use of suitable barrier layers and device configurations to mitigate the oxygen sensitivity of this remarkable material.
College: Faculty of Science and Engineering
Issue: 5
Start Page: 1655
End Page: 1660