No Cover Image

Journal article 369 views 155 downloads

Creep strength and minimum strain rate estimation from Small Punch Creep tests

S. Holmström, Y. Li, P. Dymacek, E. Vacchieri, Spencer Jeffs Orcid Logo, Robert Lancaster Orcid Logo, D. Omacht, Z. Kubon, E. Anelli, J. Rantala, A. Tonti, S. Komazaki, Naveena, M. Bruchhausen, Roger Hurst, P. Hähner, M. Richardson, D. Andres

Materials Science and Engineering: A, Volume: 731, Pages: 161 - 172

Swansea University Authors: Spencer Jeffs , Robert Lancaster , Roger Hurst

  • HolmstromCreepStrength2018.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (2.85MB)

Abstract

A new standard is currently being developed under the auspices of ECISS/TC 101 WG1 for the small punch testing technique for the estimation of both tensile and creep properties. Annex G of the new standard is covering the assessment and evaluation of small punch creep (SPC) data. The main challenge...

Full description

Published in: Materials Science and Engineering: A
ISSN: 0921-5093
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40645
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-06-06T13:34:54Z
last_indexed 2021-01-15T04:03:05Z
id cronfa40645
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-01-14T12:56:28.5188154</datestamp><bib-version>v2</bib-version><id>40645</id><entry>2018-06-06</entry><title>Creep strength and minimum strain rate estimation from Small Punch Creep tests</title><swanseaauthors><author><sid>6ff76d567df079d8bf299990849c3d8f</sid><ORCID>0000-0002-2819-9651</ORCID><firstname>Spencer</firstname><surname>Jeffs</surname><name>Spencer Jeffs</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e1a1b126acd3e4ff734691ec34967f29</sid><ORCID>0000-0002-1365-6944</ORCID><firstname>Robert</firstname><surname>Lancaster</surname><name>Robert Lancaster</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>cdee02fa7f600694e18a2fd022a915a6</sid><firstname>Roger</firstname><surname>Hurst</surname><name>Roger Hurst</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-06</date><deptcode>AERO</deptcode><abstract>A new standard is currently being developed under the auspices of ECISS/TC 101 WG1 for the small punch testing technique for the estimation of both tensile and creep properties. Annex G of the new standard is covering the assessment and evaluation of small punch creep (SPC) data. The main challenge for estimating uniaxial creep properties from SPC data is the force to equivalent stress conversion between SPC and uniaxial creep tests. In this work a range of SPC assessment methodologies, benchmarked for the standard, are compared for verifying the best practice used in the standard. The estimated equivalent stresses for SPC are compared to uniaxial creep stresses at equal rupture times, using three alternative models. In-depth analyses are performed on SPC and uniaxial creep data for P92, F92 and 316 L steel tested within an inter-laboratory round robin. The formulation for SPC equivalent creep strain rate in the standard is also assessed.</abstract><type>Journal Article</type><journal>Materials Science and Engineering: A</journal><volume>731</volume><journalNumber/><paginationStart>161</paginationStart><paginationEnd>172</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0921-5093</issnPrint><issnElectronic/><keywords>Small Punch Creep test; SPC; creep strength; creep strain rate; standardization</keywords><publishedDay>25</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-07-25</publishedDate><doi>10.1016/j.msea.2018.06.005</doi><url/><notes>Data statement: The P92 RR data can be made available on request from each testinglaboratory separately. It is foreseen that the full set of data will becomeavailable in the European Commission data base MATDB (https://odin.jrc.ec.europa.eu/odin/index.jsp) in the near future</notes><college>COLLEGE NANME</college><department>Aerospace Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>AERO</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-01-14T12:56:28.5188154</lastEdited><Created>2018-06-06T08:59:43.9430764</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>S.</firstname><surname>Holmstr&#xF6;m</surname><order>1</order></author><author><firstname>Y.</firstname><surname>Li</surname><order>2</order></author><author><firstname>P.</firstname><surname>Dymacek</surname><order>3</order></author><author><firstname>E.</firstname><surname>Vacchieri</surname><order>4</order></author><author><firstname>Spencer</firstname><surname>Jeffs</surname><orcid>0000-0002-2819-9651</orcid><order>5</order></author><author><firstname>Robert</firstname><surname>Lancaster</surname><orcid>0000-0002-1365-6944</orcid><order>6</order></author><author><firstname>D.</firstname><surname>Omacht</surname><order>7</order></author><author><firstname>Z.</firstname><surname>Kubon</surname><order>8</order></author><author><firstname>E.</firstname><surname>Anelli</surname><order>9</order></author><author><firstname>J.</firstname><surname>Rantala</surname><order>10</order></author><author><firstname>A.</firstname><surname>Tonti</surname><order>11</order></author><author><firstname>S.</firstname><surname>Komazaki</surname><order>12</order></author><author><firstname/><surname>Naveena</surname><order>13</order></author><author><firstname>M.</firstname><surname>Bruchhausen</surname><order>14</order></author><author><firstname>Roger</firstname><surname>Hurst</surname><order>15</order></author><author><firstname>P.</firstname><surname>H&#xE4;hner</surname><order>16</order></author><author><firstname>M.</firstname><surname>Richardson</surname><order>17</order></author><author><firstname>D.</firstname><surname>Andres</surname><order>18</order></author></authors><documents><document><filename>0040645-03092018154251.pdf</filename><originalFilename>HolmstromCreepStrength2018.pdf</originalFilename><uploaded>2018-09-03T15:42:51.6700000</uploaded><type>Output</type><contentLength>3014032</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>https://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2021-01-14T12:56:28.5188154 v2 40645 2018-06-06 Creep strength and minimum strain rate estimation from Small Punch Creep tests 6ff76d567df079d8bf299990849c3d8f 0000-0002-2819-9651 Spencer Jeffs Spencer Jeffs true false e1a1b126acd3e4ff734691ec34967f29 0000-0002-1365-6944 Robert Lancaster Robert Lancaster true false cdee02fa7f600694e18a2fd022a915a6 Roger Hurst Roger Hurst true false 2018-06-06 AERO A new standard is currently being developed under the auspices of ECISS/TC 101 WG1 for the small punch testing technique for the estimation of both tensile and creep properties. Annex G of the new standard is covering the assessment and evaluation of small punch creep (SPC) data. The main challenge for estimating uniaxial creep properties from SPC data is the force to equivalent stress conversion between SPC and uniaxial creep tests. In this work a range of SPC assessment methodologies, benchmarked for the standard, are compared for verifying the best practice used in the standard. The estimated equivalent stresses for SPC are compared to uniaxial creep stresses at equal rupture times, using three alternative models. In-depth analyses are performed on SPC and uniaxial creep data for P92, F92 and 316 L steel tested within an inter-laboratory round robin. The formulation for SPC equivalent creep strain rate in the standard is also assessed. Journal Article Materials Science and Engineering: A 731 161 172 0921-5093 Small Punch Creep test; SPC; creep strength; creep strain rate; standardization 25 7 2018 2018-07-25 10.1016/j.msea.2018.06.005 Data statement: The P92 RR data can be made available on request from each testinglaboratory separately. It is foreseen that the full set of data will becomeavailable in the European Commission data base MATDB (https://odin.jrc.ec.europa.eu/odin/index.jsp) in the near future COLLEGE NANME Aerospace Engineering COLLEGE CODE AERO Swansea University 2021-01-14T12:56:28.5188154 2018-06-06T08:59:43.9430764 College of Engineering Engineering S. Holmström 1 Y. Li 2 P. Dymacek 3 E. Vacchieri 4 Spencer Jeffs 0000-0002-2819-9651 5 Robert Lancaster 0000-0002-1365-6944 6 D. Omacht 7 Z. Kubon 8 E. Anelli 9 J. Rantala 10 A. Tonti 11 S. Komazaki 12 Naveena 13 M. Bruchhausen 14 Roger Hurst 15 P. Hähner 16 M. Richardson 17 D. Andres 18 0040645-03092018154251.pdf HolmstromCreepStrength2018.pdf 2018-09-03T15:42:51.6700000 Output 3014032 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution License (CC-BY). true eng https://creativecommons.org/licenses/by/4.0/
title Creep strength and minimum strain rate estimation from Small Punch Creep tests
spellingShingle Creep strength and minimum strain rate estimation from Small Punch Creep tests
Spencer, Jeffs
Robert, Lancaster
Roger, Hurst
title_short Creep strength and minimum strain rate estimation from Small Punch Creep tests
title_full Creep strength and minimum strain rate estimation from Small Punch Creep tests
title_fullStr Creep strength and minimum strain rate estimation from Small Punch Creep tests
title_full_unstemmed Creep strength and minimum strain rate estimation from Small Punch Creep tests
title_sort Creep strength and minimum strain rate estimation from Small Punch Creep tests
author_id_str_mv 6ff76d567df079d8bf299990849c3d8f
e1a1b126acd3e4ff734691ec34967f29
cdee02fa7f600694e18a2fd022a915a6
author_id_fullname_str_mv 6ff76d567df079d8bf299990849c3d8f_***_Spencer, Jeffs
e1a1b126acd3e4ff734691ec34967f29_***_Robert, Lancaster
cdee02fa7f600694e18a2fd022a915a6_***_Roger, Hurst
author Spencer, Jeffs
Robert, Lancaster
Roger, Hurst
author2 S. Holmström
Y. Li
P. Dymacek
E. Vacchieri
Spencer Jeffs
Robert Lancaster
D. Omacht
Z. Kubon
E. Anelli
J. Rantala
A. Tonti
S. Komazaki
Naveena
M. Bruchhausen
Roger Hurst
P. Hähner
M. Richardson
D. Andres
format Journal article
container_title Materials Science and Engineering: A
container_volume 731
container_start_page 161
publishDate 2018
institution Swansea University
issn 0921-5093
doi_str_mv 10.1016/j.msea.2018.06.005
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description A new standard is currently being developed under the auspices of ECISS/TC 101 WG1 for the small punch testing technique for the estimation of both tensile and creep properties. Annex G of the new standard is covering the assessment and evaluation of small punch creep (SPC) data. The main challenge for estimating uniaxial creep properties from SPC data is the force to equivalent stress conversion between SPC and uniaxial creep tests. In this work a range of SPC assessment methodologies, benchmarked for the standard, are compared for verifying the best practice used in the standard. The estimated equivalent stresses for SPC are compared to uniaxial creep stresses at equal rupture times, using three alternative models. In-depth analyses are performed on SPC and uniaxial creep data for P92, F92 and 316 L steel tested within an inter-laboratory round robin. The formulation for SPC equivalent creep strain rate in the standard is also assessed.
published_date 2018-07-25T04:03:24Z
_version_ 1722535435675107328
score 10.852904