Journal article 985 views 215 downloads
Atomistic Modeling of F-Actin Mechanical Responses and Determination of Mechanical Properties
ACS Biomaterials Science & Engineering, Volume: 4, Issue: 8, Pages: 2794 - 2803
Swansea University Author: Chengyuan Wang
-
PDF | Accepted Manuscript
Download (2.12MB)
DOI (Published version): 10.1021/acsbiomaterials.8b00640
Abstract
A molecular structural mechanics (MSM) model was developed for F-actins in cells, where the force constants describing the monomer interaction were achieved using molecular dynamics simulations. The MSM was then employed to predict the mechanical properties of F-actin. The obtained Young’s modulus (...
Published in: | ACS Biomaterials Science & Engineering |
---|---|
ISSN: | 2373-9878 2373-9878 |
Published: |
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa40781 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
A molecular structural mechanics (MSM) model was developed for F-actins in cells, where the force constants describing the monomer interaction were achieved using molecular dynamics simulations. The MSM was then employed to predict the mechanical properties of F-actin. The obtained Young’s modulus (1.92 GPa), torsional rigidity (2.36 × 10–26 Nm2), and flexural rigidity (10.84 × 10–26 Nm2) were found to be in good agreement with existing experimental data. Subsequently, the tension-induced bending was studied for F-actins as a result of their helical structure. Mechanical instability was also investigated for the actin filaments in filopodial protrusion by considering the reinforcing effect of the actin-binding proteins. The predicted buckling load agreed well with the experimentally obtained stall force, showing a pivotal role of the actin-binding protein in regulating the stiffness of F-actin bundles during the formation of filopodia protrusion. Herein, it is expected that the MSM model can be extended to the mechanics of more complex filamentous systems such as stress fibers and actin meshwork. |
---|---|
Keywords: |
actin filament; molecular dynamics simulations; molecular mechanics; structural details; structural mechanics model |
Issue: |
8 |
Start Page: |
2794 |
End Page: |
2803 |