No Cover Image

Conference Paper/Proceeding/Abstract 1339 views 318 downloads

Local Representation Learning with A Convolutional Autoencoder

Michael P. Kenning, Xianghua Xie Orcid Logo, Michael Edwards, Jingjing Deng

2018 25th IEEE International Conference on Image Processing (ICIP), Pages: 3239 - 3243

Swansea University Authors: Xianghua Xie Orcid Logo, Jingjing Deng

Abstract

We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder.

Published in: 2018 25th IEEE International Conference on Image Processing (ICIP)
ISSN: 2381-8549
Published: Athens, Greece 2018 IEEE International Conference on Image Processing 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40806
first_indexed 2018-06-23T19:33:39Z
last_indexed 2018-09-24T18:51:22Z
id cronfa40806
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-09-24T16:20:42.6328723</datestamp><bib-version>v2</bib-version><id>40806</id><entry>2018-06-23</entry><title>Local Representation Learning with A Convolutional Autoencoder</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-23</date><deptcode>MACS</deptcode><abstract>We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2018 25th IEEE International Conference on Image Processing (ICIP)</journal><paginationStart>3239</paginationStart><paginationEnd>3243</paginationEnd><publisher>2018 IEEE International Conference on Image Processing</publisher><placeOfPublication>Athens, Greece</placeOfPublication><issnElectronic>2381-8549</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-10-07</publishedDate><doi>10.1109/ICIP.2018.8451233</doi><url>https://ieeexplore.ieee.org/document/8451233/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-09-24T16:20:42.6328723</lastEdited><Created>2018-06-23T15:46:38.4597825</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Michael P.</firstname><surname>Kenning</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Michael</firstname><surname>Edwards</surname><order>3</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>4</order></author></authors><documents><document><filename>0040806-23062018154737.pdf</filename><originalFilename>conference_071817.pdf</originalFilename><uploaded>2018-06-23T15:47:37.2100000</uploaded><type>Output</type><contentLength>921994</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-09-24T16:20:42.6328723 v2 40806 2018-06-23 Local Representation Learning with A Convolutional Autoencoder b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false 2018-06-23 MACS We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder. Conference Paper/Proceeding/Abstract 2018 25th IEEE International Conference on Image Processing (ICIP) 3239 3243 2018 IEEE International Conference on Image Processing Athens, Greece 2381-8549 7 10 2018 2018-10-07 10.1109/ICIP.2018.8451233 https://ieeexplore.ieee.org/document/8451233/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-09-24T16:20:42.6328723 2018-06-23T15:46:38.4597825 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Michael P. Kenning 1 Xianghua Xie 0000-0002-2701-8660 2 Michael Edwards 3 Jingjing Deng 4 0040806-23062018154737.pdf conference_071817.pdf 2018-06-23T15:47:37.2100000 Output 921994 application/pdf Accepted Manuscript true 2019-10-07T00:00:00.0000000 true eng
title Local Representation Learning with A Convolutional Autoencoder
spellingShingle Local Representation Learning with A Convolutional Autoencoder
Xianghua Xie
Jingjing Deng
title_short Local Representation Learning with A Convolutional Autoencoder
title_full Local Representation Learning with A Convolutional Autoencoder
title_fullStr Local Representation Learning with A Convolutional Autoencoder
title_full_unstemmed Local Representation Learning with A Convolutional Autoencoder
title_sort Local Representation Learning with A Convolutional Autoencoder
author_id_str_mv b334d40963c7a2f435f06d2c26c74e11
6f6d01d585363d6dc1622640bb4fcb3f
author_id_fullname_str_mv b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie
6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng
author Xianghua Xie
Jingjing Deng
author2 Michael P. Kenning
Xianghua Xie
Michael Edwards
Jingjing Deng
format Conference Paper/Proceeding/Abstract
container_title 2018 25th IEEE International Conference on Image Processing (ICIP)
container_start_page 3239
publishDate 2018
institution Swansea University
issn 2381-8549
doi_str_mv 10.1109/ICIP.2018.8451233
publisher 2018 IEEE International Conference on Image Processing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science
url https://ieeexplore.ieee.org/document/8451233/
document_store_str 1
active_str 0
description We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder.
published_date 2018-10-07T07:24:12Z
_version_ 1821298762442604544
score 11.047609