Conference Paper/Proceeding/Abstract 1339 views 318 downloads
Local Representation Learning with A Convolutional Autoencoder
2018 25th IEEE International Conference on Image Processing (ICIP), Pages: 3239 - 3243
Swansea University Authors: Xianghua Xie , Jingjing Deng
-
PDF | Accepted Manuscript
Download (930.76KB)
DOI (Published version): 10.1109/ICIP.2018.8451233
Abstract
We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder.
Published in: | 2018 25th IEEE International Conference on Image Processing (ICIP) |
---|---|
ISSN: | 2381-8549 |
Published: |
Athens, Greece
2018 IEEE International Conference on Image Processing
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa40806 |
first_indexed |
2018-06-23T19:33:39Z |
---|---|
last_indexed |
2018-09-24T18:51:22Z |
id |
cronfa40806 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-09-24T16:20:42.6328723</datestamp><bib-version>v2</bib-version><id>40806</id><entry>2018-06-23</entry><title>Local Representation Learning with A Convolutional Autoencoder</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>6f6d01d585363d6dc1622640bb4fcb3f</sid><firstname>Jingjing</firstname><surname>Deng</surname><name>Jingjing Deng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-06-23</date><deptcode>MACS</deptcode><abstract>We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>2018 25th IEEE International Conference on Image Processing (ICIP)</journal><paginationStart>3239</paginationStart><paginationEnd>3243</paginationEnd><publisher>2018 IEEE International Conference on Image Processing</publisher><placeOfPublication>Athens, Greece</placeOfPublication><issnElectronic>2381-8549</issnElectronic><keywords/><publishedDay>7</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-10-07</publishedDate><doi>10.1109/ICIP.2018.8451233</doi><url>https://ieeexplore.ieee.org/document/8451233/</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-09-24T16:20:42.6328723</lastEdited><Created>2018-06-23T15:46:38.4597825</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Michael P.</firstname><surname>Kenning</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Michael</firstname><surname>Edwards</surname><order>3</order></author><author><firstname>Jingjing</firstname><surname>Deng</surname><order>4</order></author></authors><documents><document><filename>0040806-23062018154737.pdf</filename><originalFilename>conference_071817.pdf</originalFilename><uploaded>2018-06-23T15:47:37.2100000</uploaded><type>Output</type><contentLength>921994</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-10-07T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-09-24T16:20:42.6328723 v2 40806 2018-06-23 Local Representation Learning with A Convolutional Autoencoder b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 6f6d01d585363d6dc1622640bb4fcb3f Jingjing Deng Jingjing Deng true false 2018-06-23 MACS We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder. Conference Paper/Proceeding/Abstract 2018 25th IEEE International Conference on Image Processing (ICIP) 3239 3243 2018 IEEE International Conference on Image Processing Athens, Greece 2381-8549 7 10 2018 2018-10-07 10.1109/ICIP.2018.8451233 https://ieeexplore.ieee.org/document/8451233/ COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2018-09-24T16:20:42.6328723 2018-06-23T15:46:38.4597825 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Michael P. Kenning 1 Xianghua Xie 0000-0002-2701-8660 2 Michael Edwards 3 Jingjing Deng 4 0040806-23062018154737.pdf conference_071817.pdf 2018-06-23T15:47:37.2100000 Output 921994 application/pdf Accepted Manuscript true 2019-10-07T00:00:00.0000000 true eng |
title |
Local Representation Learning with A Convolutional Autoencoder |
spellingShingle |
Local Representation Learning with A Convolutional Autoencoder Xianghua Xie Jingjing Deng |
title_short |
Local Representation Learning with A Convolutional Autoencoder |
title_full |
Local Representation Learning with A Convolutional Autoencoder |
title_fullStr |
Local Representation Learning with A Convolutional Autoencoder |
title_full_unstemmed |
Local Representation Learning with A Convolutional Autoencoder |
title_sort |
Local Representation Learning with A Convolutional Autoencoder |
author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 6f6d01d585363d6dc1622640bb4fcb3f |
author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie 6f6d01d585363d6dc1622640bb4fcb3f_***_Jingjing Deng |
author |
Xianghua Xie Jingjing Deng |
author2 |
Michael P. Kenning Xianghua Xie Michael Edwards Jingjing Deng |
format |
Conference Paper/Proceeding/Abstract |
container_title |
2018 25th IEEE International Conference on Image Processing (ICIP) |
container_start_page |
3239 |
publishDate |
2018 |
institution |
Swansea University |
issn |
2381-8549 |
doi_str_mv |
10.1109/ICIP.2018.8451233 |
publisher |
2018 IEEE International Conference on Image Processing |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
url |
https://ieeexplore.ieee.org/document/8451233/ |
document_store_str |
1 |
active_str |
0 |
description |
We propose a clustering approach embedded in deep convolutional auto-encoder. In contrast to conventional clustering approaches, our method simultaneously learns feature representation and cluster assignment through deep convolutional auto-encoder. |
published_date |
2018-10-07T07:24:12Z |
_version_ |
1821298762442604544 |
score |
11.047609 |