No Cover Image

Journal article 233 views 17 downloads

All Printable Perovskite Solar Modules with 198 cm2 Active Area and Over 6% Efficiency / Eifion, Jewell; David, Beynon; Trystan, Watson; Cecile, Charbonneau; Jenny, Baker; Zhengfei, Wei

Advanced Materials Technologies, Start page: 1800156

Swansesa University Authors: Eifion, Jewell, David, Beynon, Trystan, Watson, Cecile, Charbonneau, Jenny, Baker, Zhengfei, Wei

Check full text

DOI (Published version): 10.1002/admt.201800156

Abstract

Perovskite solar cells based on an all printable mesoporous stack, made of overlapping titania, zirconia, and carbon layers, represent a promising device architecture for both simple, low‐cost manufacture, and outstanding stability. Here a breakthrough in the upscaling of this technology is reported...

Full description

Published in: Advanced Materials Technologies
ISSN: 2365709X
Published: 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa40885
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Perovskite solar cells based on an all printable mesoporous stack, made of overlapping titania, zirconia, and carbon layers, represent a promising device architecture for both simple, low‐cost manufacture, and outstanding stability. Here a breakthrough in the upscaling of this technology is reported: Screen printed modules on A4 sized conductive glass substrates, delivering power conversion efficiency (PCE) ranging from 3 to 5% at 1 sun on an unprecedented 198 cm2 active area. An increase in the PCE, due to higher VOC and fill factor, is demonstrated by patterning the TiO2 blocking layer. Furthermore, an unexpected increase of the performance is observed over time, while storing the modules in the dark, unencapsulated, at ambient conditions (with humidity increasing from 30 and 70% RH), resulting in 6.6% PCE and 6.3% stabilised at Vmax measured after over two months since fabrication. Equally impressive is the low light performance with 11 and 18% PCE achieved respectively at 200 and 1000 lux under fluorescent lighting. It is hoped that this demonstration of good performance on large area can unlock the viability of perovskite solar cells manufactured on an industrial scale.
College: College of Engineering
Start Page: 1800156