No Cover Image

Journal article 548 views 89 downloads

On twisted reality conditions

Tomasz Brzeziński, Ludwik Dąbrowski, Andrzej Sitarz, Tomasz Brzezinski Orcid Logo

Letters in Mathematical Physics, Volume: 109, Pages: 643 - 659

Swansea University Author: Tomasz Brzezinski Orcid Logo

Abstract

We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phy...

Full description

Published in: Letters in Mathematical Physics
ISSN: 0377-9017 1573-0530
Published: Springer 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa41070
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-07-19T13:39:03Z
last_indexed 2019-10-11T20:05:56Z
id cronfa41070
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-10-11T15:20:28.6267398</datestamp><bib-version>v2</bib-version><id>41070</id><entry>2018-07-19</entry><title>On twisted reality conditions</title><swanseaauthors><author><sid>30466d840b59627325596fbbb2c82754</sid><ORCID>0000-0001-6270-3439</ORCID><firstname>Tomasz</firstname><surname>Brzezinski</surname><name>Tomasz Brzezinski</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-07-19</date><deptcode>SMA</deptcode><abstract>We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499&#x2013;1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the &#x2018;minimaltwist&#x2019; procedure of an even spectral triple.</abstract><type>Journal Article</type><journal>Letters in Mathematical Physics</journal><volume>109</volume><paginationStart>643</paginationStart><paginationEnd>659</paginationEnd><publisher>Springer</publisher><issnPrint>0377-9017</issnPrint><issnElectronic>1573-0530</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1007/s11005-018-1120-x</doi><url/><notes>This is a post-peer-review, pre-copyedit version of an article published in Letters in Mathematical Physics. The final authenticated version is available online at: https://doi.org/10.1007/s11005-018-1120-x</notes><college>COLLEGE NANME</college><department>Mathematics</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>SMA</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-10-11T15:20:28.6267398</lastEdited><Created>2018-07-19T12:46:42.3117857</Created><path><level id="1">College of Science</level><level id="2">Mathematics</level></path><authors><author><firstname>Tomasz</firstname><surname>Brzezi&#x144;ski</surname><order>1</order></author><author><firstname>Ludwik</firstname><surname>D&#x105;browski</surname><order>2</order></author><author><firstname>Andrzej</firstname><surname>Sitarz</surname><order>3</order></author><author><firstname>Tomasz</firstname><surname>Brzezinski</surname><orcid>0000-0001-6270-3439</orcid><order>4</order></author></authors><documents><document><filename>0041070-19072018125236.pdf</filename><originalFilename>reality-LMP-rev-1.pdf</originalFilename><uploaded>2018-07-19T12:52:36.0300000</uploaded><type>Output</type><contentLength>223213</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-08-04T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-10-11T15:20:28.6267398 v2 41070 2018-07-19 On twisted reality conditions 30466d840b59627325596fbbb2c82754 0000-0001-6270-3439 Tomasz Brzezinski Tomasz Brzezinski true false 2018-07-19 SMA We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499–1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the ‘minimaltwist’ procedure of an even spectral triple. Journal Article Letters in Mathematical Physics 109 643 659 Springer 0377-9017 1573-0530 31 12 2019 2019-12-31 10.1007/s11005-018-1120-x This is a post-peer-review, pre-copyedit version of an article published in Letters in Mathematical Physics. The final authenticated version is available online at: https://doi.org/10.1007/s11005-018-1120-x COLLEGE NANME Mathematics COLLEGE CODE SMA Swansea University 2019-10-11T15:20:28.6267398 2018-07-19T12:46:42.3117857 College of Science Mathematics Tomasz Brzeziński 1 Ludwik Dąbrowski 2 Andrzej Sitarz 3 Tomasz Brzezinski 0000-0001-6270-3439 4 0041070-19072018125236.pdf reality-LMP-rev-1.pdf 2018-07-19T12:52:36.0300000 Output 223213 application/pdf Accepted Manuscript true 2019-08-04T00:00:00.0000000 true eng
title On twisted reality conditions
spellingShingle On twisted reality conditions
Tomasz Brzezinski
title_short On twisted reality conditions
title_full On twisted reality conditions
title_fullStr On twisted reality conditions
title_full_unstemmed On twisted reality conditions
title_sort On twisted reality conditions
author_id_str_mv 30466d840b59627325596fbbb2c82754
author_id_fullname_str_mv 30466d840b59627325596fbbb2c82754_***_Tomasz Brzezinski
author Tomasz Brzezinski
author2 Tomasz Brzeziński
Ludwik Dąbrowski
Andrzej Sitarz
Tomasz Brzezinski
format Journal article
container_title Letters in Mathematical Physics
container_volume 109
container_start_page 643
publishDate 2019
institution Swansea University
issn 0377-9017
1573-0530
doi_str_mv 10.1007/s11005-018-1120-x
publisher Springer
college_str College of Science
hierarchytype
hierarchy_top_id collegeofscience
hierarchy_top_title College of Science
hierarchy_parent_id collegeofscience
hierarchy_parent_title College of Science
department_str Mathematics{{{_:::_}}}College of Science{{{_:::_}}}Mathematics
document_store_str 1
active_str 0
description We study the twisted reality condition of Math. Phys. Anal. Geom. 19 (2016),no. 3, Art. 16, for spectral triples, in particular with respect to the product and the commutant.Motivated by this we present the procedure, which allows one to untwist the twisted spectraltriples studied in Lett. Math. Phys. 106 (2016), 1499–1530. We also relate this construction toconformally rescaled real twisted spectral triples, and discuss the untwisting of the ‘minimaltwist’ procedure of an even spectral triple.
published_date 2019-12-31T03:55:30Z
_version_ 1737026678620684288
score 10.898047