Journal article 1375 views 931 downloads
Membrane separation as a pre-treatment process for oily saline water
Muhammad Tawalbeh,
Abdullah Al Mojjly,
Amani Al-Othman,
Nidal Hilal
Desalination, Volume: 447, Pages: 182 - 202
Swansea University Author: Nidal Hilal
-
PDF | Accepted Manuscript
Download (1.22MB)
DOI (Published version): 10.1016/j.desal.2018.07.029
Abstract
Oil and gas industry generate large quantities of oily wastewater effluents. This wastewater has a major impact on the environment and human health. Hence, a suitable separation method is applied to treat oily wastewater to not only meet the environmental regulations but also to promote water recycl...
Published in: | Desalination |
---|---|
ISSN: | 00119164 |
Published: |
Elsevier
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa41187 |
first_indexed |
2018-07-30T19:31:20Z |
---|---|
last_indexed |
2018-11-13T14:14:29Z |
id |
cronfa41187 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2018-11-13T08:17:14.2363018</datestamp><bib-version>v2</bib-version><id>41187</id><entry>2018-07-30</entry><title>Membrane separation as a pre-treatment process for oily saline water</title><swanseaauthors><author><sid>3acba771241d878c8e35ff464aec0342</sid><firstname>Nidal</firstname><surname>Hilal</surname><name>Nidal Hilal</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-07-30</date><abstract>Oil and gas industry generate large quantities of oily wastewater effluents. This wastewater has a major impact on the environment and human health. Hence, a suitable separation method is applied to treat oily wastewater to not only meet the environmental regulations but also to promote water recycling and desalination. Many studies were performed in the literature to investigate the best technologies for treating oily saline water such as the traditional technique of gravity sedimentation and dewatering. Among all, membrane separation processes have been receiving extra attention in the past decades. This is due to their high separation efficiency, low energy requirements and easy operation.Additional research activities were also directed to utilize membranes in pre-treatment separation processes of oily water ahead of the desalination units. This paper presents a comprehensive review for the recent treatment processes available in the literature for oily wastewater with the concentration on the use of various membranes to accomplish this target. The paper also reviews the recent findings in membranes' development and emerging modification techniques such as interfacial polymerization, nanoparticles incorporation, and surface grafting. A special emphasis was given for ceramic membranes, their operation and their preparation techniques. Moreover, the paper compares and discusses the effect of different operating conditions such as trans-membrane pressure and cross flow velocity on membrane separation performance in oily water.</abstract><type>Journal Article</type><journal>Desalination</journal><volume>447</volume><paginationStart>182</paginationStart><paginationEnd>202</paginationEnd><publisher>Elsevier</publisher><issnPrint>00119164</issnPrint><keywords>Oily wastewater, Produce water, Oily saline water, Oil/water separation, Oil removal, Desalination, Membrane Technology, Polymeric membranes, Ceramic membranes, Membrane modifications.</keywords><publishedDay>1</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-12-01</publishedDate><doi>10.1016/j.desal.2018.07.029</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-11-13T08:17:14.2363018</lastEdited><Created>2018-07-30T17:00:09.5619383</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Muhammad</firstname><surname>Tawalbeh</surname><order>1</order></author><author><firstname>Abdullah</firstname><surname>Al Mojjly</surname><order>2</order></author><author><firstname>Amani</firstname><surname>Al-Othman</surname><order>3</order></author><author><firstname>Nidal</firstname><surname>Hilal</surname><order>4</order></author></authors><documents><document><filename>0041187-14082018151221.pdf</filename><originalFilename>tawalbeh2018.pdf</originalFilename><uploaded>2018-08-14T15:12:21.5570000</uploaded><type>Output</type><contentLength>1348095</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-07-31T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2018-11-13T08:17:14.2363018 v2 41187 2018-07-30 Membrane separation as a pre-treatment process for oily saline water 3acba771241d878c8e35ff464aec0342 Nidal Hilal Nidal Hilal true false 2018-07-30 Oil and gas industry generate large quantities of oily wastewater effluents. This wastewater has a major impact on the environment and human health. Hence, a suitable separation method is applied to treat oily wastewater to not only meet the environmental regulations but also to promote water recycling and desalination. Many studies were performed in the literature to investigate the best technologies for treating oily saline water such as the traditional technique of gravity sedimentation and dewatering. Among all, membrane separation processes have been receiving extra attention in the past decades. This is due to their high separation efficiency, low energy requirements and easy operation.Additional research activities were also directed to utilize membranes in pre-treatment separation processes of oily water ahead of the desalination units. This paper presents a comprehensive review for the recent treatment processes available in the literature for oily wastewater with the concentration on the use of various membranes to accomplish this target. The paper also reviews the recent findings in membranes' development and emerging modification techniques such as interfacial polymerization, nanoparticles incorporation, and surface grafting. A special emphasis was given for ceramic membranes, their operation and their preparation techniques. Moreover, the paper compares and discusses the effect of different operating conditions such as trans-membrane pressure and cross flow velocity on membrane separation performance in oily water. Journal Article Desalination 447 182 202 Elsevier 00119164 Oily wastewater, Produce water, Oily saline water, Oil/water separation, Oil removal, Desalination, Membrane Technology, Polymeric membranes, Ceramic membranes, Membrane modifications. 1 12 2018 2018-12-01 10.1016/j.desal.2018.07.029 COLLEGE NANME COLLEGE CODE Swansea University 2018-11-13T08:17:14.2363018 2018-07-30T17:00:09.5619383 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Muhammad Tawalbeh 1 Abdullah Al Mojjly 2 Amani Al-Othman 3 Nidal Hilal 4 0041187-14082018151221.pdf tawalbeh2018.pdf 2018-08-14T15:12:21.5570000 Output 1348095 application/pdf Accepted Manuscript true 2019-07-31T00:00:00.0000000 true eng |
title |
Membrane separation as a pre-treatment process for oily saline water |
spellingShingle |
Membrane separation as a pre-treatment process for oily saline water Nidal Hilal |
title_short |
Membrane separation as a pre-treatment process for oily saline water |
title_full |
Membrane separation as a pre-treatment process for oily saline water |
title_fullStr |
Membrane separation as a pre-treatment process for oily saline water |
title_full_unstemmed |
Membrane separation as a pre-treatment process for oily saline water |
title_sort |
Membrane separation as a pre-treatment process for oily saline water |
author_id_str_mv |
3acba771241d878c8e35ff464aec0342 |
author_id_fullname_str_mv |
3acba771241d878c8e35ff464aec0342_***_Nidal Hilal |
author |
Nidal Hilal |
author2 |
Muhammad Tawalbeh Abdullah Al Mojjly Amani Al-Othman Nidal Hilal |
format |
Journal article |
container_title |
Desalination |
container_volume |
447 |
container_start_page |
182 |
publishDate |
2018 |
institution |
Swansea University |
issn |
00119164 |
doi_str_mv |
10.1016/j.desal.2018.07.029 |
publisher |
Elsevier |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
Oil and gas industry generate large quantities of oily wastewater effluents. This wastewater has a major impact on the environment and human health. Hence, a suitable separation method is applied to treat oily wastewater to not only meet the environmental regulations but also to promote water recycling and desalination. Many studies were performed in the literature to investigate the best technologies for treating oily saline water such as the traditional technique of gravity sedimentation and dewatering. Among all, membrane separation processes have been receiving extra attention in the past decades. This is due to their high separation efficiency, low energy requirements and easy operation.Additional research activities were also directed to utilize membranes in pre-treatment separation processes of oily water ahead of the desalination units. This paper presents a comprehensive review for the recent treatment processes available in the literature for oily wastewater with the concentration on the use of various membranes to accomplish this target. The paper also reviews the recent findings in membranes' development and emerging modification techniques such as interfacial polymerization, nanoparticles incorporation, and surface grafting. A special emphasis was given for ceramic membranes, their operation and their preparation techniques. Moreover, the paper compares and discusses the effect of different operating conditions such as trans-membrane pressure and cross flow velocity on membrane separation performance in oily water. |
published_date |
2018-12-01T01:43:25Z |
_version_ |
1822002098405900288 |
score |
11.048042 |