No Cover Image

Conference Paper/Proceeding/Abstract 426 views 67 downloads

Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data

James Rafferty, Ashley Akbari Orcid Logo, Mark D Atkinson, Stephen Bain, Stephen Luzio, Jeffery Stephens, David Owens, Rebecca Thomas

International Journal of Population Data Science, Volume: 3, Issue: 4

Swansea University Author: Ashley Akbari Orcid Logo

  • 44372.pdf

    PDF | Version of Record

    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

    Download (240.76KB)
Published in: International Journal of Population Data Science
ISSN: 2399-4908
Published: Banff, Canada IPDLN 2018 conference 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa44372
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2018-09-18T18:56:59Z
last_indexed 2018-10-16T13:46:25Z
id cronfa44372
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2018-10-16T10:32:07.2063235</datestamp><bib-version>v2</bib-version><id>44372</id><entry>2018-09-18</entry><title>Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data</title><swanseaauthors><author><sid>aa1b025ec0243f708bb5eb0a93d6fb52</sid><ORCID>0000-0003-0814-0801</ORCID><firstname>Ashley</firstname><surname>Akbari</surname><name>Ashley Akbari</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-09-18</date><deptcode>HDAT</deptcode><abstract/><type>Conference Paper/Proceeding/Abstract</type><journal>International Journal of Population Data Science</journal><volume>3</volume><journalNumber>4</journalNumber><publisher>IPDLN 2018 conference</publisher><placeOfPublication>Banff, Canada</placeOfPublication><issnElectronic>2399-4908</issnElectronic><keywords/><publishedDay>31</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-08-31</publishedDate><doi>10.23889/ijpds.v3i4.795</doi><url/><notes/><college>COLLEGE NANME</college><department>Health Data Science</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>HDAT</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2018-10-16T10:32:07.2063235</lastEdited><Created>2018-09-18T17:12:38.2732879</Created><path><level id="1">Faculty of Medicine, Health and Life Sciences</level><level id="2">Swansea University Medical School - Medicine</level></path><authors><author><firstname>James</firstname><surname>Rafferty</surname><order>1</order></author><author><firstname>Ashley</firstname><surname>Akbari</surname><orcid>0000-0003-0814-0801</orcid><order>2</order></author><author><firstname>Mark D</firstname><surname>Atkinson</surname><order>3</order></author><author><firstname>Stephen</firstname><surname>Bain</surname><order>4</order></author><author><firstname>Stephen</firstname><surname>Luzio</surname><order>5</order></author><author><firstname>Jeffery</firstname><surname>Stephens</surname><order>6</order></author><author><firstname>David</firstname><surname>Owens</surname><order>7</order></author><author><firstname>Rebecca</firstname><surname>Thomas</surname><order>8</order></author></authors><documents><document><filename>0044372-16102018103051.pdf</filename><originalFilename>44372.pdf</originalFilename><uploaded>2018-10-16T10:30:51.8630000</uploaded><type>Output</type><contentLength>217586</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2018-10-16T00:00:00.0000000</embargoDate><documentNotes>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2018-10-16T10:32:07.2063235 v2 44372 2018-09-18 Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data aa1b025ec0243f708bb5eb0a93d6fb52 0000-0003-0814-0801 Ashley Akbari Ashley Akbari true false 2018-09-18 HDAT Conference Paper/Proceeding/Abstract International Journal of Population Data Science 3 4 IPDLN 2018 conference Banff, Canada 2399-4908 31 8 2018 2018-08-31 10.23889/ijpds.v3i4.795 COLLEGE NANME Health Data Science COLLEGE CODE HDAT Swansea University 2018-10-16T10:32:07.2063235 2018-09-18T17:12:38.2732879 Faculty of Medicine, Health and Life Sciences Swansea University Medical School - Medicine James Rafferty 1 Ashley Akbari 0000-0003-0814-0801 2 Mark D Atkinson 3 Stephen Bain 4 Stephen Luzio 5 Jeffery Stephens 6 David Owens 7 Rebecca Thomas 8 0044372-16102018103051.pdf 44372.pdf 2018-10-16T10:30:51.8630000 Output 217586 application/pdf Version of Record true 2018-10-16T00:00:00.0000000 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. true eng
title Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
spellingShingle Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
Ashley Akbari
title_short Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
title_full Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
title_fullStr Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
title_full_unstemmed Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
title_sort Identifying all persons in Wales with type 1 diabetes mellitus using routinely collected linked data
author_id_str_mv aa1b025ec0243f708bb5eb0a93d6fb52
author_id_fullname_str_mv aa1b025ec0243f708bb5eb0a93d6fb52_***_Ashley Akbari
author Ashley Akbari
author2 James Rafferty
Ashley Akbari
Mark D Atkinson
Stephen Bain
Stephen Luzio
Jeffery Stephens
David Owens
Rebecca Thomas
format Conference Paper/Proceeding/Abstract
container_title International Journal of Population Data Science
container_volume 3
container_issue 4
publishDate 2018
institution Swansea University
issn 2399-4908
doi_str_mv 10.23889/ijpds.v3i4.795
publisher IPDLN 2018 conference
college_str Faculty of Medicine, Health and Life Sciences
hierarchytype
hierarchy_top_id facultyofmedicinehealthandlifesciences
hierarchy_top_title Faculty of Medicine, Health and Life Sciences
hierarchy_parent_id facultyofmedicinehealthandlifesciences
hierarchy_parent_title Faculty of Medicine, Health and Life Sciences
department_str Swansea University Medical School - Medicine{{{_:::_}}}Faculty of Medicine, Health and Life Sciences{{{_:::_}}}Swansea University Medical School - Medicine
document_store_str 1
active_str 0
published_date 2018-08-31T03:53:47Z
_version_ 1756780484138893312
score 10.927107