Journal article 779 views 151 downloads
Non-intrusive reduced order modelling with least squares fitting on a sparse grid
International Journal for Numerical Methods in Fluids, Volume: 83, Issue: 3, Pages: 291 - 306
Swansea University Author: Dunhui Xiao
-
PDF | Accepted Manuscript
Download (2.34MB)
DOI (Published version): 10.1002/fld.4268
Abstract
This paper presents a non‐intrusive reduced order model for general, dynamic partial differential equations. Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first projects the unknowns with full space and time coordinates onto a reduced POD basis. The...
Published in: | International Journal for Numerical Methods in Fluids |
---|---|
ISSN: | 0271-2091 |
Published: |
2017
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa46453 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
This paper presents a non‐intrusive reduced order model for general, dynamic partial differential equations. Based upon proper orthogonal decomposition (POD) and Smolyak sparse grid collocation, the method first projects the unknowns with full space and time coordinates onto a reduced POD basis. Then we introduce a new least squares fitting procedure to approximate the dynamical transition of the POD coefficients between subsequent time steps, taking only a set of full model solution snapshots as the training data during the construction. Thus, neither the physical details nor further numerical simulations of the original PDE model are required by this methodology, and the level of non‐intrusiveness is improved compared with existing reduced order models. Furthermore, we take adaptive measures to address the instability issue arising from reduced order iterations of the POD coefficients. This model can be applied to a wide range of physical and engineering scenarios, and we test it on a couple of problems in fluid dynamics. It is demonstrated that this reduced order approach captures the dominant features of the high‐fidelity models with reasonable accuracy while the computation complexity is reduced by several orders of magnitude. |
---|---|
College: |
Faculty of Science and Engineering |
Issue: |
3 |
Start Page: |
291 |
End Page: |
306 |