No Cover Image

Journal article 1614 views 1209 downloads

Nuclear Desalination: A State-of-the-Art Review

Amani Al-Othman, Noora N. Darwish, Muhammad Qasim, Mohammad Tawalbeh, Naif A. Darwish, Nidal Hilal

Desalination, Volume: 457, Pages: 39 - 61

Swansea University Author: Nidal Hilal

  • Nuclearaccepted.pdf

    PDF | Accepted Manuscript

    Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).

    Download (2.02MB)

DOI (Published version): 10.1016/j.desal.2019.01.002

Abstract

Thermal desalination is an energy intensive process that satisfies its requirement from conventional fossil fuel sources. Current research efforts aim at finding alternatives for fossil fuels to power thermal desalination. Nuclear energy offers a feasible option for power cogeneration and production...

Full description

Published in: Desalination
Published: 2019
URI: https://cronfa.swan.ac.uk/Record/cronfa48025
first_indexed 2019-01-02T14:00:52Z
last_indexed 2019-02-04T20:01:16Z
id cronfa48025
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-02-04T15:23:23.3728347</datestamp><bib-version>v2</bib-version><id>48025</id><entry>2018-12-31</entry><title>Nuclear Desalination: A State-of-the-Art Review</title><swanseaauthors><author><sid>3acba771241d878c8e35ff464aec0342</sid><firstname>Nidal</firstname><surname>Hilal</surname><name>Nidal Hilal</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2018-12-31</date><abstract>Thermal desalination is an energy intensive process that satisfies its requirement from conventional fossil fuel sources. Current research efforts aim at finding alternatives for fossil fuels to power thermal desalination. Nuclear energy offers a feasible option for power cogeneration and production of fresh water due to the significant amount of recovered useful heat. The heat is exploited to produce steam and generate electricity on-site to power thermal and membrane desalination facilities. Large or small/medium nuclear reactors (SMR) can be used. This paper reviews the various aspects of nuclear desalination, the different nuclear reactors that have been coupled with desalination processes, and the hybrid desalination systems coupled with nuclear reactors. It also discusses the safety and public acceptance for the nuclear desalination practices as well as the latest economic studies and assessments for on &#x2013;site nuclear desalination power plants. Ten main projects around the world are primarily operated as nuclear desalination plants. The major desalination processes coupled with nuclear SMRs are MSF, MED and RO. The cost of water production using nuclear desalination was estimated to range from 0.4 $/m3 to 1.8 $/m3 depending on the type of reactor and the desalination process used.</abstract><type>Journal Article</type><journal>Desalination</journal><volume>457</volume><paginationStart>39</paginationStart><paginationEnd>61</paginationEnd><publisher/><keywords>Nuclear desalination, SMR in desalination, Nuclear power plant, techno-economic analysis, safety analysis</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-05-01</publishedDate><doi>10.1016/j.desal.2019.01.002</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-02-04T15:23:23.3728347</lastEdited><Created>2018-12-31T18:03:49.4421681</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Amani</firstname><surname>Al-Othman</surname><order>1</order></author><author><firstname>Noora N.</firstname><surname>Darwish</surname><order>2</order></author><author><firstname>Muhammad</firstname><surname>Qasim</surname><order>3</order></author><author><firstname>Mohammad</firstname><surname>Tawalbeh</surname><order>4</order></author><author><firstname>Naif A.</firstname><surname>Darwish</surname><order>5</order></author><author><firstname>Nidal</firstname><surname>Hilal</surname><order>6</order></author></authors><documents><document><filename>0048025-07012019152034.pdf</filename><originalFilename>Nuclearaccepted.pdf</originalFilename><uploaded>2019-01-07T15:20:34.9670000</uploaded><type>Output</type><contentLength>2166347</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-02-04T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-02-04T15:23:23.3728347 v2 48025 2018-12-31 Nuclear Desalination: A State-of-the-Art Review 3acba771241d878c8e35ff464aec0342 Nidal Hilal Nidal Hilal true false 2018-12-31 Thermal desalination is an energy intensive process that satisfies its requirement from conventional fossil fuel sources. Current research efforts aim at finding alternatives for fossil fuels to power thermal desalination. Nuclear energy offers a feasible option for power cogeneration and production of fresh water due to the significant amount of recovered useful heat. The heat is exploited to produce steam and generate electricity on-site to power thermal and membrane desalination facilities. Large or small/medium nuclear reactors (SMR) can be used. This paper reviews the various aspects of nuclear desalination, the different nuclear reactors that have been coupled with desalination processes, and the hybrid desalination systems coupled with nuclear reactors. It also discusses the safety and public acceptance for the nuclear desalination practices as well as the latest economic studies and assessments for on –site nuclear desalination power plants. Ten main projects around the world are primarily operated as nuclear desalination plants. The major desalination processes coupled with nuclear SMRs are MSF, MED and RO. The cost of water production using nuclear desalination was estimated to range from 0.4 $/m3 to 1.8 $/m3 depending on the type of reactor and the desalination process used. Journal Article Desalination 457 39 61 Nuclear desalination, SMR in desalination, Nuclear power plant, techno-economic analysis, safety analysis 1 5 2019 2019-05-01 10.1016/j.desal.2019.01.002 COLLEGE NANME COLLEGE CODE Swansea University 2019-02-04T15:23:23.3728347 2018-12-31T18:03:49.4421681 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Amani Al-Othman 1 Noora N. Darwish 2 Muhammad Qasim 3 Mohammad Tawalbeh 4 Naif A. Darwish 5 Nidal Hilal 6 0048025-07012019152034.pdf Nuclearaccepted.pdf 2019-01-07T15:20:34.9670000 Output 2166347 application/pdf Accepted Manuscript true 2020-02-04T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng
title Nuclear Desalination: A State-of-the-Art Review
spellingShingle Nuclear Desalination: A State-of-the-Art Review
Nidal Hilal
title_short Nuclear Desalination: A State-of-the-Art Review
title_full Nuclear Desalination: A State-of-the-Art Review
title_fullStr Nuclear Desalination: A State-of-the-Art Review
title_full_unstemmed Nuclear Desalination: A State-of-the-Art Review
title_sort Nuclear Desalination: A State-of-the-Art Review
author_id_str_mv 3acba771241d878c8e35ff464aec0342
author_id_fullname_str_mv 3acba771241d878c8e35ff464aec0342_***_Nidal Hilal
author Nidal Hilal
author2 Amani Al-Othman
Noora N. Darwish
Muhammad Qasim
Mohammad Tawalbeh
Naif A. Darwish
Nidal Hilal
format Journal article
container_title Desalination
container_volume 457
container_start_page 39
publishDate 2019
institution Swansea University
doi_str_mv 10.1016/j.desal.2019.01.002
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised
document_store_str 1
active_str 0
description Thermal desalination is an energy intensive process that satisfies its requirement from conventional fossil fuel sources. Current research efforts aim at finding alternatives for fossil fuels to power thermal desalination. Nuclear energy offers a feasible option for power cogeneration and production of fresh water due to the significant amount of recovered useful heat. The heat is exploited to produce steam and generate electricity on-site to power thermal and membrane desalination facilities. Large or small/medium nuclear reactors (SMR) can be used. This paper reviews the various aspects of nuclear desalination, the different nuclear reactors that have been coupled with desalination processes, and the hybrid desalination systems coupled with nuclear reactors. It also discusses the safety and public acceptance for the nuclear desalination practices as well as the latest economic studies and assessments for on –site nuclear desalination power plants. Ten main projects around the world are primarily operated as nuclear desalination plants. The major desalination processes coupled with nuclear SMRs are MSF, MED and RO. The cost of water production using nuclear desalination was estimated to range from 0.4 $/m3 to 1.8 $/m3 depending on the type of reactor and the desalination process used.
published_date 2019-05-01T19:44:54Z
_version_ 1821979542370123776
score 11.048042