No Cover Image

Journal article 1115 views 136 downloads

Hyperons in thermal QCD: A lattice view

Gert Aarts Orcid Logo, Chris Allton Orcid Logo, Davide De Boni, Benjamin Jäger

Physical Review D, Volume: 99, Issue: 7

Swansea University Authors: Gert Aarts Orcid Logo, Chris Allton Orcid Logo

  • PhysRevD.99.074503-1.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).

    Download (571.17KB)

Abstract

The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g., in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Her...

Full description

Published in: Physical Review D
ISSN: 2470-0010 2470-0029
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48150
first_indexed 2019-01-13T14:00:31Z
last_indexed 2020-07-01T19:02:01Z
id cronfa48150
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2020-07-01T14:17:36.6226637</datestamp><bib-version>v2</bib-version><id>48150</id><entry>2019-01-13</entry><title>Hyperons in thermal QCD: A lattice view</title><swanseaauthors><author><sid>1ba0dad382dfe18348ec32fc65f3f3de</sid><ORCID>0000-0002-6038-3782</ORCID><firstname>Gert</firstname><surname>Aarts</surname><name>Gert Aarts</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>de706a260fa1e1e47430693e135f41c7</sid><ORCID>0000-0003-0795-124X</ORCID><firstname>Chris</firstname><surname>Allton</surname><name>Chris Allton</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-01-13</date><deptcode>BGPS</deptcode><abstract>The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g., in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Here we investigate this issue, using nonperturbative lattice simulations employing the FASTSUM anisotropic Nf=2+1 ensembles. We study the fate of octet and decuplet baryons as the temperature increases, focussing in particular on the positive- and negative-parity ground states. While the positive-parity ground state masses are indeed seen to be temperature independent, within the error, a strong temperature dependence is observed in the negative-parity channels. We give a simple parametrization of this and formulate an in-medium HRG, which is particularly effective for hyperons. Parity doubling is seen to emerge in the deconfined phase at the level of correlators, with a noticeable effect of the heavier s quark. Channel dependence of this transition is analyzed.</abstract><type>Journal Article</type><journal>Physical Review D</journal><volume>99</volume><journalNumber>7</journalNumber><publisher/><issnPrint>2470-0010</issnPrint><issnElectronic>2470-0029</issnElectronic><keywords/><publishedDay>9</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-04-09</publishedDate><doi>10.1103/PhysRevD.99.074503</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-07-01T14:17:36.6226637</lastEdited><Created>2019-01-13T10:43:03.1520739</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Gert</firstname><surname>Aarts</surname><orcid>0000-0002-6038-3782</orcid><order>1</order></author><author><firstname>Chris</firstname><surname>Allton</surname><orcid>0000-0003-0795-124X</orcid><order>2</order></author><author><firstname>Davide De</firstname><surname>Boni</surname><order>3</order></author><author><firstname>Benjamin</firstname><surname>J&#xE4;ger</surname><order>4</order></author></authors><documents><document><filename>0048150-24042019203451.pdf</filename><originalFilename>PhysRevD.99.074503-1.pdf</originalFilename><uploaded>2019-04-24T20:34:51.5870000</uploaded><type>Output</type><contentLength>604385</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-04-24T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2020-07-01T14:17:36.6226637 v2 48150 2019-01-13 Hyperons in thermal QCD: A lattice view 1ba0dad382dfe18348ec32fc65f3f3de 0000-0002-6038-3782 Gert Aarts Gert Aarts true false de706a260fa1e1e47430693e135f41c7 0000-0003-0795-124X Chris Allton Chris Allton true false 2019-01-13 BGPS The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g., in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Here we investigate this issue, using nonperturbative lattice simulations employing the FASTSUM anisotropic Nf=2+1 ensembles. We study the fate of octet and decuplet baryons as the temperature increases, focussing in particular on the positive- and negative-parity ground states. While the positive-parity ground state masses are indeed seen to be temperature independent, within the error, a strong temperature dependence is observed in the negative-parity channels. We give a simple parametrization of this and formulate an in-medium HRG, which is particularly effective for hyperons. Parity doubling is seen to emerge in the deconfined phase at the level of correlators, with a noticeable effect of the heavier s quark. Channel dependence of this transition is analyzed. Journal Article Physical Review D 99 7 2470-0010 2470-0029 9 4 2019 2019-04-09 10.1103/PhysRevD.99.074503 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2020-07-01T14:17:36.6226637 2019-01-13T10:43:03.1520739 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Gert Aarts 0000-0002-6038-3782 1 Chris Allton 0000-0003-0795-124X 2 Davide De Boni 3 Benjamin Jäger 4 0048150-24042019203451.pdf PhysRevD.99.074503-1.pdf 2019-04-24T20:34:51.5870000 Output 604385 application/pdf Version of Record true 2019-04-24T00:00:00.0000000 Released under the terms of a Creative Commons Attribution 4.0 International license (CC-BY). true eng
title Hyperons in thermal QCD: A lattice view
spellingShingle Hyperons in thermal QCD: A lattice view
Gert Aarts
Chris Allton
title_short Hyperons in thermal QCD: A lattice view
title_full Hyperons in thermal QCD: A lattice view
title_fullStr Hyperons in thermal QCD: A lattice view
title_full_unstemmed Hyperons in thermal QCD: A lattice view
title_sort Hyperons in thermal QCD: A lattice view
author_id_str_mv 1ba0dad382dfe18348ec32fc65f3f3de
de706a260fa1e1e47430693e135f41c7
author_id_fullname_str_mv 1ba0dad382dfe18348ec32fc65f3f3de_***_Gert Aarts
de706a260fa1e1e47430693e135f41c7_***_Chris Allton
author Gert Aarts
Chris Allton
author2 Gert Aarts
Chris Allton
Davide De Boni
Benjamin Jäger
format Journal article
container_title Physical Review D
container_volume 99
container_issue 7
publishDate 2019
institution Swansea University
issn 2470-0010
2470-0029
doi_str_mv 10.1103/PhysRevD.99.074503
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description The hadron resonance gas (HRG) is a widely used description of matter under extreme conditions, e.g., in the context of heavy-ion phenomenology. Commonly used implementations of the HRG employ vacuum hadron masses throughout the hadronic phase and hence do not include possible in-medium effects. Here we investigate this issue, using nonperturbative lattice simulations employing the FASTSUM anisotropic Nf=2+1 ensembles. We study the fate of octet and decuplet baryons as the temperature increases, focussing in particular on the positive- and negative-parity ground states. While the positive-parity ground state masses are indeed seen to be temperature independent, within the error, a strong temperature dependence is observed in the negative-parity channels. We give a simple parametrization of this and formulate an in-medium HRG, which is particularly effective for hyperons. Parity doubling is seen to emerge in the deconfined phase at the level of correlators, with a noticeable effect of the heavier s quark. Channel dependence of this transition is analyzed.
published_date 2019-04-09T07:42:17Z
_version_ 1822115273048588288
score 11.048453