Journal article 535 views
Symmetry and asymmetry of minimizers of a class of noncoercive functionals
Advances in Calculus of Variations, Volume: 13, Issue: 1, Pages: 15 - 32
Swansea University Author: Friedemann Brock
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1515/acv-2017-0005
Abstract
We prove symmetry results for minimizers of a noncoercive functional defined on theclass of Sobolev functions with zero mean value. The minimizers are foliated Schwarz symmetric,i.e., they are axially symmetric with respect to an axis passing through the origin and nonincreasingin the polar angle fr...
Published in: | Advances in Calculus of Variations |
---|---|
ISSN: | 1864-8258 1864-8266 |
Published: |
Walter de Gruyter GmbH
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48732 |
first_indexed |
2019-02-11T11:58:02Z |
---|---|
last_indexed |
2024-11-14T11:57:36Z |
id |
cronfa48732 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-06-23T18:09:29.6299867</datestamp><bib-version>v2</bib-version><id>48732</id><entry>2019-02-07</entry><title>Symmetry and asymmetry of minimizers of a class of noncoercive functionals</title><swanseaauthors><author><sid>d0a9ec2d7f8f2c8e27f5614ed1404a54</sid><firstname>Friedemann</firstname><surname>Brock</surname><name>Friedemann Brock</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-07</date><deptcode>MACS</deptcode><abstract>We prove symmetry results for minimizers of a noncoercive functional defined on theclass of Sobolev functions with zero mean value. The minimizers are foliated Schwarz symmetric,i.e., they are axially symmetric with respect to an axis passing through the origin and nonincreasingin the polar angle from this axis. In the two-dimensional case, we show a symmetry breaking.</abstract><type>Journal Article</type><journal>Advances in Calculus of Variations</journal><volume>13</volume><journalNumber>1</journalNumber><paginationStart>15</paginationStart><paginationEnd>32</paginationEnd><publisher>Walter de Gruyter GmbH</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1864-8258</issnPrint><issnElectronic>1864-8266</issnElectronic><keywords>Foliated Schwarz symmetry, Euler equation, symmetry breaking</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-12-31</publishedDate><doi>10.1515/acv-2017-0005</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-23T18:09:29.6299867</lastEdited><Created>2019-02-07T14:36:57.5589885</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Friedemann</firstname><surname>Brock</surname><order>1</order></author><author><firstname>Gisella</firstname><surname>Croce</surname><order>2</order></author><author><firstname>Olivier</firstname><surname>Guibé</surname><order>3</order></author><author><firstname>Anna</firstname><surname>Mercaldo</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-06-23T18:09:29.6299867 v2 48732 2019-02-07 Symmetry and asymmetry of minimizers of a class of noncoercive functionals d0a9ec2d7f8f2c8e27f5614ed1404a54 Friedemann Brock Friedemann Brock true false 2019-02-07 MACS We prove symmetry results for minimizers of a noncoercive functional defined on theclass of Sobolev functions with zero mean value. The minimizers are foliated Schwarz symmetric,i.e., they are axially symmetric with respect to an axis passing through the origin and nonincreasingin the polar angle from this axis. In the two-dimensional case, we show a symmetry breaking. Journal Article Advances in Calculus of Variations 13 1 15 32 Walter de Gruyter GmbH 1864-8258 1864-8266 Foliated Schwarz symmetry, Euler equation, symmetry breaking 31 12 2020 2020-12-31 10.1515/acv-2017-0005 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-06-23T18:09:29.6299867 2019-02-07T14:36:57.5589885 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Friedemann Brock 1 Gisella Croce 2 Olivier Guibé 3 Anna Mercaldo 4 |
title |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
spellingShingle |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals Friedemann Brock |
title_short |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
title_full |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
title_fullStr |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
title_full_unstemmed |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
title_sort |
Symmetry and asymmetry of minimizers of a class of noncoercive functionals |
author_id_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54 |
author_id_fullname_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54_***_Friedemann Brock |
author |
Friedemann Brock |
author2 |
Friedemann Brock Gisella Croce Olivier Guibé Anna Mercaldo |
format |
Journal article |
container_title |
Advances in Calculus of Variations |
container_volume |
13 |
container_issue |
1 |
container_start_page |
15 |
publishDate |
2020 |
institution |
Swansea University |
issn |
1864-8258 1864-8266 |
doi_str_mv |
10.1515/acv-2017-0005 |
publisher |
Walter de Gruyter GmbH |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
0 |
active_str |
0 |
description |
We prove symmetry results for minimizers of a noncoercive functional defined on theclass of Sobolev functions with zero mean value. The minimizers are foliated Schwarz symmetric,i.e., they are axially symmetric with respect to an axis passing through the origin and nonincreasingin the polar angle from this axis. In the two-dimensional case, we show a symmetry breaking. |
published_date |
2020-12-31T13:42:49Z |
_version_ |
1821322583292772352 |
score |
11.048042 |