No Cover Image

Journal article 418 views

New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's

F. Brock, F. Chiacchio, A. Ferone, A. Mercaldo, Friedemann Brock

Advances in Mathematics, Volume: 336, Pages: 316 - 334

Swansea University Author: Friedemann Brock

Full text not available from this repository: check for access using links below.

Abstract

We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boun...

Full description

Published in: Advances in Mathematics
ISSN: 00018708
Published: Elsevier 2018
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48737
first_indexed 2019-02-11T11:58:02Z
last_indexed 2024-11-14T11:57:37Z
id cronfa48737
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-06-23T15:55:10.5661160</datestamp><bib-version>v2</bib-version><id>48737</id><entry>2019-02-07</entry><title>New P&#xF3;lya&#x2013;Szeg&#xF6;-type inequalities and an alternative approach to comparison results for PDE's</title><swanseaauthors><author><sid>d0a9ec2d7f8f2c8e27f5614ed1404a54</sid><firstname>Friedemann</firstname><surname>Brock</surname><name>Friedemann Brock</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-07</date><deptcode>MACS</deptcode><abstract>We prove some P&#xF3;lya&#x2013;Szeg&#xF6; type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical P&#xF3;lya&#x2013;Szeg&#xF6; principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations.</abstract><type>Journal Article</type><journal>Advances in Mathematics</journal><volume>336</volume><journalNumber/><paginationStart>316</paginationStart><paginationEnd>334</paginationEnd><publisher>Elsevier</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>00018708</issnPrint><issnElectronic/><keywords>P&#xF3;lya&#x2013;Szeg&#xF6; principle, Steiner symmetrization, elliptic equations, comparison results</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-10-01</publishedDate><doi>10.1016/j.aim.2018.07.026</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-23T15:55:10.5661160</lastEdited><Created>2019-02-07T14:52:28.6806098</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>F.</firstname><surname>Brock</surname><order>1</order></author><author><firstname>F.</firstname><surname>Chiacchio</surname><order>2</order></author><author><firstname>A.</firstname><surname>Ferone</surname><order>3</order></author><author><firstname>A.</firstname><surname>Mercaldo</surname><order>4</order></author><author><firstname>Friedemann</firstname><surname>Brock</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2023-06-23T15:55:10.5661160 v2 48737 2019-02-07 New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's d0a9ec2d7f8f2c8e27f5614ed1404a54 Friedemann Brock Friedemann Brock true false 2019-02-07 MACS We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations. Journal Article Advances in Mathematics 336 316 334 Elsevier 00018708 Pólya–Szegö principle, Steiner symmetrization, elliptic equations, comparison results 1 10 2018 2018-10-01 10.1016/j.aim.2018.07.026 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-06-23T15:55:10.5661160 2019-02-07T14:52:28.6806098 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics F. Brock 1 F. Chiacchio 2 A. Ferone 3 A. Mercaldo 4 Friedemann Brock 5
title New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
spellingShingle New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
Friedemann Brock
title_short New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
title_full New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
title_fullStr New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
title_full_unstemmed New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
title_sort New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
author_id_str_mv d0a9ec2d7f8f2c8e27f5614ed1404a54
author_id_fullname_str_mv d0a9ec2d7f8f2c8e27f5614ed1404a54_***_Friedemann Brock
author Friedemann Brock
author2 F. Brock
F. Chiacchio
A. Ferone
A. Mercaldo
Friedemann Brock
format Journal article
container_title Advances in Mathematics
container_volume 336
container_start_page 316
publishDate 2018
institution Swansea University
issn 00018708
doi_str_mv 10.1016/j.aim.2018.07.026
publisher Elsevier
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 0
active_str 0
description We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations.
published_date 2018-10-01T13:42:50Z
_version_ 1821322584648581120
score 11.048042