Journal article 418 views
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's
F. Brock,
F. Chiacchio,
A. Ferone,
A. Mercaldo,
Friedemann Brock
Advances in Mathematics, Volume: 336, Pages: 316 - 334
Swansea University Author: Friedemann Brock
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.aim.2018.07.026
Abstract
We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boun...
Published in: | Advances in Mathematics |
---|---|
ISSN: | 00018708 |
Published: |
Elsevier
2018
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa48737 |
first_indexed |
2019-02-11T11:58:02Z |
---|---|
last_indexed |
2024-11-14T11:57:37Z |
id |
cronfa48737 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-06-23T15:55:10.5661160</datestamp><bib-version>v2</bib-version><id>48737</id><entry>2019-02-07</entry><title>New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's</title><swanseaauthors><author><sid>d0a9ec2d7f8f2c8e27f5614ed1404a54</sid><firstname>Friedemann</firstname><surname>Brock</surname><name>Friedemann Brock</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-07</date><deptcode>MACS</deptcode><abstract>We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations.</abstract><type>Journal Article</type><journal>Advances in Mathematics</journal><volume>336</volume><journalNumber/><paginationStart>316</paginationStart><paginationEnd>334</paginationEnd><publisher>Elsevier</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>00018708</issnPrint><issnElectronic/><keywords>Pólya–Szegö principle, Steiner symmetrization, elliptic equations, comparison results</keywords><publishedDay>1</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2018</publishedYear><publishedDate>2018-10-01</publishedDate><doi>10.1016/j.aim.2018.07.026</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-23T15:55:10.5661160</lastEdited><Created>2019-02-07T14:52:28.6806098</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>F.</firstname><surname>Brock</surname><order>1</order></author><author><firstname>F.</firstname><surname>Chiacchio</surname><order>2</order></author><author><firstname>A.</firstname><surname>Ferone</surname><order>3</order></author><author><firstname>A.</firstname><surname>Mercaldo</surname><order>4</order></author><author><firstname>Friedemann</firstname><surname>Brock</surname><order>5</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-06-23T15:55:10.5661160 v2 48737 2019-02-07 New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's d0a9ec2d7f8f2c8e27f5614ed1404a54 Friedemann Brock Friedemann Brock true false 2019-02-07 MACS We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations. Journal Article Advances in Mathematics 336 316 334 Elsevier 00018708 Pólya–Szegö principle, Steiner symmetrization, elliptic equations, comparison results 1 10 2018 2018-10-01 10.1016/j.aim.2018.07.026 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-06-23T15:55:10.5661160 2019-02-07T14:52:28.6806098 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics F. Brock 1 F. Chiacchio 2 A. Ferone 3 A. Mercaldo 4 Friedemann Brock 5 |
title |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
spellingShingle |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's Friedemann Brock |
title_short |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
title_full |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
title_fullStr |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
title_full_unstemmed |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
title_sort |
New Pólya–Szegö-type inequalities and an alternative approach to comparison results for PDE's |
author_id_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54 |
author_id_fullname_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54_***_Friedemann Brock |
author |
Friedemann Brock |
author2 |
F. Brock F. Chiacchio A. Ferone A. Mercaldo Friedemann Brock |
format |
Journal article |
container_title |
Advances in Mathematics |
container_volume |
336 |
container_start_page |
316 |
publishDate |
2018 |
institution |
Swansea University |
issn |
00018708 |
doi_str_mv |
10.1016/j.aim.2018.07.026 |
publisher |
Elsevier |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
document_store_str |
0 |
active_str |
0 |
description |
We prove some Pólya–Szegö type inequalities which involve couples of functions and their rearrangements. The inequalities reduce to the classical Pólya–Szegö principle when the two functions coincide. As an application, we give a different proof of a comparison result for solutions to Dirichlet boundary value problems for Laplacian equations. |
published_date |
2018-10-01T13:42:50Z |
_version_ |
1821322584648581120 |
score |
11.048042 |