No Cover Image

Journal article 447 views

An isoperimetric inequality for Gauss-like product measures

F. Brock, F. Chiacchio, A. Mercaldo, Friedemann Brock

Journal de Mathématiques Pures et Appliquées, Volume: 106, Issue: 2, Pages: 375 - 391

Swansea University Author: Friedemann Brock

Full text not available from this repository: check for access using links below.

Abstract

This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the uni...

Full description

Published in: Journal de Mathématiques Pures et Appliquées
ISSN: 00217824
Published: 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48744
first_indexed 2019-02-11T11:58:03Z
last_indexed 2024-11-14T11:57:37Z
id cronfa48744
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-06-23T18:09:34.3874662</datestamp><bib-version>v2</bib-version><id>48744</id><entry>2019-02-07</entry><title>An isoperimetric inequality for Gauss-like product measures</title><swanseaauthors><author><sid>d0a9ec2d7f8f2c8e27f5614ed1404a54</sid><firstname>Friedemann</firstname><surname>Brock</surname><name>Friedemann Brock</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-07</date><deptcode>MACS</deptcode><abstract>This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations.</abstract><type>Journal Article</type><journal>Journal de Math&#xE9;matiques Pures et Appliqu&#xE9;es</journal><volume>106</volume><journalNumber>2</journalNumber><paginationStart>375</paginationStart><paginationEnd>391</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>00217824</issnPrint><issnElectronic/><keywords>relative isoperimetric inequalities, Polya&#x2013;Szeg&#xF6; principle, degenerate elliptic equations</keywords><publishedDay>2</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-08-02</publishedDate><doi>10.1016/j.matpur.2016.02.014</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-23T18:09:34.3874662</lastEdited><Created>2019-02-07T15:25:03.5601265</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>F.</firstname><surname>Brock</surname><order>1</order></author><author><firstname>F.</firstname><surname>Chiacchio</surname><order>2</order></author><author><firstname>A.</firstname><surname>Mercaldo</surname><order>3</order></author><author><firstname>Friedemann</firstname><surname>Brock</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807>
spelling 2023-06-23T18:09:34.3874662 v2 48744 2019-02-07 An isoperimetric inequality for Gauss-like product measures d0a9ec2d7f8f2c8e27f5614ed1404a54 Friedemann Brock Friedemann Brock true false 2019-02-07 MACS This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations. Journal Article Journal de Mathématiques Pures et Appliquées 106 2 375 391 00217824 relative isoperimetric inequalities, Polya–Szegö principle, degenerate elliptic equations 2 8 2016 2016-08-02 10.1016/j.matpur.2016.02.014 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-06-23T18:09:34.3874662 2019-02-07T15:25:03.5601265 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics F. Brock 1 F. Chiacchio 2 A. Mercaldo 3 Friedemann Brock 4
title An isoperimetric inequality for Gauss-like product measures
spellingShingle An isoperimetric inequality for Gauss-like product measures
Friedemann Brock
title_short An isoperimetric inequality for Gauss-like product measures
title_full An isoperimetric inequality for Gauss-like product measures
title_fullStr An isoperimetric inequality for Gauss-like product measures
title_full_unstemmed An isoperimetric inequality for Gauss-like product measures
title_sort An isoperimetric inequality for Gauss-like product measures
author_id_str_mv d0a9ec2d7f8f2c8e27f5614ed1404a54
author_id_fullname_str_mv d0a9ec2d7f8f2c8e27f5614ed1404a54_***_Friedemann Brock
author Friedemann Brock
author2 F. Brock
F. Chiacchio
A. Mercaldo
Friedemann Brock
format Journal article
container_title Journal de Mathématiques Pures et Appliquées
container_volume 106
container_issue 2
container_start_page 375
publishDate 2016
institution Swansea University
issn 00217824
doi_str_mv 10.1016/j.matpur.2016.02.014
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 0
active_str 0
description This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations.
published_date 2016-08-02T13:42:52Z
_version_ 1821322585921552384
score 11.048042