Journal article 652 views
An isoperimetric inequality for Gauss-like product measures
Journal de Mathématiques Pures et Appliquées, Volume: 106, Issue: 2, Pages: 375 - 391
Swansea University Author: Friedemann Brock
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.1016/j.matpur.2016.02.014
Abstract
This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the uni...
| Published in: | Journal de Mathématiques Pures et Appliquées |
|---|---|
| ISSN: | 00217824 |
| Published: |
2016
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa48744 |
| first_indexed |
2019-02-11T11:58:03Z |
|---|---|
| last_indexed |
2024-11-14T11:57:37Z |
| id |
cronfa48744 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-06-23T18:09:34.3874662</datestamp><bib-version>v2</bib-version><id>48744</id><entry>2019-02-07</entry><title>An isoperimetric inequality for Gauss-like product measures</title><swanseaauthors><author><sid>d0a9ec2d7f8f2c8e27f5614ed1404a54</sid><firstname>Friedemann</firstname><surname>Brock</surname><name>Friedemann Brock</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-02-07</date><deptcode>MACS</deptcode><abstract>This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations.</abstract><type>Journal Article</type><journal>Journal de Mathématiques Pures et Appliquées</journal><volume>106</volume><journalNumber>2</journalNumber><paginationStart>375</paginationStart><paginationEnd>391</paginationEnd><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>00217824</issnPrint><issnElectronic/><keywords>relative isoperimetric inequalities, Polya–Szegö principle, degenerate elliptic equations</keywords><publishedDay>2</publishedDay><publishedMonth>8</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-08-02</publishedDate><doi>10.1016/j.matpur.2016.02.014</doi><url/><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-06-23T18:09:34.3874662</lastEdited><Created>2019-02-07T15:25:03.5601265</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>F.</firstname><surname>Brock</surname><order>1</order></author><author><firstname>F.</firstname><surname>Chiacchio</surname><order>2</order></author><author><firstname>A.</firstname><surname>Mercaldo</surname><order>3</order></author><author><firstname>Friedemann</firstname><surname>Brock</surname><order>4</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2023-06-23T18:09:34.3874662 v2 48744 2019-02-07 An isoperimetric inequality for Gauss-like product measures d0a9ec2d7f8f2c8e27f5614ed1404a54 Friedemann Brock Friedemann Brock true false 2019-02-07 MACS This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations. Journal Article Journal de Mathématiques Pures et Appliquées 106 2 375 391 00217824 relative isoperimetric inequalities, Polya–Szegö principle, degenerate elliptic equations 2 8 2016 2016-08-02 10.1016/j.matpur.2016.02.014 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2023-06-23T18:09:34.3874662 2019-02-07T15:25:03.5601265 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics F. Brock 1 F. Chiacchio 2 A. Mercaldo 3 Friedemann Brock 4 |
| title |
An isoperimetric inequality for Gauss-like product measures |
| spellingShingle |
An isoperimetric inequality for Gauss-like product measures Friedemann Brock |
| title_short |
An isoperimetric inequality for Gauss-like product measures |
| title_full |
An isoperimetric inequality for Gauss-like product measures |
| title_fullStr |
An isoperimetric inequality for Gauss-like product measures |
| title_full_unstemmed |
An isoperimetric inequality for Gauss-like product measures |
| title_sort |
An isoperimetric inequality for Gauss-like product measures |
| author_id_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54 |
| author_id_fullname_str_mv |
d0a9ec2d7f8f2c8e27f5614ed1404a54_***_Friedemann Brock |
| author |
Friedemann Brock |
| author2 |
F. Brock F. Chiacchio A. Mercaldo Friedemann Brock |
| format |
Journal article |
| container_title |
Journal de Mathématiques Pures et Appliquées |
| container_volume |
106 |
| container_issue |
2 |
| container_start_page |
375 |
| publishDate |
2016 |
| institution |
Swansea University |
| issn |
00217824 |
| doi_str_mv |
10.1016/j.matpur.2016.02.014 |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| document_store_str |
0 |
| active_str |
0 |
| description |
This paper deals with various questions related to the isoperimetric problem for a smooth positive measure in a domain of R^N. We find some necessary conditions on the density that render the intersection of half spaces with the domain a minimum in the isoperimetric problem. We then identify the unique isoperimetric set for a class of factorized finite measures. These results are finally used in order to get sharp inequalities in weighted Sobolev spaces and a comparison result for solutions to boundary value problems for degenerate elliptic equations. |
| published_date |
2016-08-02T15:31:50Z |
| _version_ |
1850682859339120640 |
| score |
11.08899 |

