No Cover Image

Journal article 217 views 30 downloads

Computational hygro-thermal vibration and buckling analysis of functionally graded sandwich microbeams / A.I. Aria; M.I. Friswell; Michael Friswell

Composites Part B: Engineering, Volume: 165, Pages: 785 - 797

Swansea University Author: Michael, Friswell

Abstract

In this study, for the first time, hygro-thermal behaviour of functionally graded (FG) sandwich microbeams based on nonlocal elasticity theory is investigated. Temperature-dependent material properties are considered for the FG microbeam, which are assumed to change continuously through the thicknes...

Full description

Published in: Composites Part B: Engineering
ISSN: 13598368
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa48935
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: In this study, for the first time, hygro-thermal behaviour of functionally graded (FG) sandwich microbeams based on nonlocal elasticity theory is investigated. Temperature-dependent material properties are considered for the FG microbeam, which are assumed to change continuously through the thickness based on the power-law form. The equations of motion are obtained on the basis of first-order shear deformation beam theory via Hamilton's principle. The size effects are considered in the framework of the nonlocal elasticity theory of Eringen. The detailed variational and finite element procedure for FG sandwich microbeams are presented with a five-noded beam element and numerical examinations are performed. The influence of several parameters such as temperature and moisture gradients, material graduation, nonlocal parameter, face-core-face and span to depth ratios on the critical buckling temperature and the nondimensional fundamental frequencies of the FG sandwich microbeams are analysed. Based on the results of this study, temperature and moisture rise soften the FG sandwich microbeam and result in the reduction of the critical buckling load and vibration frequency. In addition, the FG sandwich microbeam with a thicker ceramic core can resist higher temperature and moisture gradients.
Keywords: Hygro-thermal analysis, Functionally graded, Sandwich, Nonlocal elasticity, Finite element method
College: College of Engineering
Start Page: 785
End Page: 797