Conference Paper/Proceeding/Abstract 940 views 215 downloads
Extracting Lineage Information from Hand-Drawn Ancient Maps
Image Analysis and Recognition, Volume: 9730, Pages: 268 - 275
Swansea University Authors:
Xianghua Xie , Matthew Stevens
-
PDF | Accepted Manuscript
Download (7.83MB)
DOI (Published version): 10.1007/978-3-319-41501-7_30
Abstract
In this paper, we present an efficient segmentation technique that extracts piecewise linear patterns from hand-drawn maps. The user is only required to place the starting and end points and the method is capable of extracting the route that connects the two, which closely colocates with the hand-dr...
Published in: | Image Analysis and Recognition |
---|---|
ISBN: | 978-3-319-41500-0 978-3-319-41501-7 |
ISSN: | 0302-9743 1611-3349 |
Published: |
Springer International Publishing
2016
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa49176 |
first_indexed |
2019-03-12T19:59:53Z |
---|---|
last_indexed |
2019-09-12T20:42:26Z |
id |
cronfa49176 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-09-12T15:24:01.6166615</datestamp><bib-version>v2</bib-version><id>49176</id><entry>2019-03-12</entry><title>Extracting Lineage Information from Hand-Drawn Ancient Maps</title><swanseaauthors><author><sid>b334d40963c7a2f435f06d2c26c74e11</sid><ORCID>0000-0002-2701-8660</ORCID><firstname>Xianghua</firstname><surname>Xie</surname><name>Xianghua Xie</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>24e42c4652a3104d12bc7424d475408d</sid><ORCID>0000-0001-8646-951X</ORCID><firstname>Matthew</firstname><surname>Stevens</surname><name>Matthew Stevens</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-03-12</date><deptcode>MACS</deptcode><abstract>In this paper, we present an efficient segmentation technique that extracts piecewise linear patterns from hand-drawn maps. The user is only required to place the starting and end points and the method is capable of extracting the route that connects the two, which closely colocates with the hand-drawn map. It provides an effective approach to interactively process and understand those historical maps. The proposed method employs supervised learning to evaluate at every pixel location the probability that such a lineage pattern exists, followed by shortest path segmentation to extract the border of interest.</abstract><type>Conference Paper/Proceeding/Abstract</type><journal>Image Analysis and Recognition</journal><volume>9730</volume><paginationStart>268</paginationStart><paginationEnd>275</paginationEnd><publisher>Springer International Publishing</publisher><isbnPrint>978-3-319-41500-0</isbnPrint><isbnElectronic>978-3-319-41501-7</isbnElectronic><issnPrint>0302-9743</issnPrint><issnElectronic>1611-3349</issnElectronic><keywords>computer vision, medieval history, maps</keywords><publishedDay>1</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-07-01</publishedDate><doi>10.1007/978-3-319-41501-7_30</doi><url/><notes>Authored by Ehab Essa, Xianghua Xie, Richard Turner, Matthew Stevens, and Daniel Power</notes><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-09-12T15:24:01.6166615</lastEdited><Created>2019-03-12T15:42:48.0701442</Created><authors><author><firstname>Ehab</firstname><surname>Essa</surname><order>1</order></author><author><firstname>Xianghua</firstname><surname>Xie</surname><orcid>0000-0002-2701-8660</orcid><order>2</order></author><author><firstname>Richard</firstname><surname>Turner</surname><order>3</order></author><author><firstname>Matthew</firstname><surname>Stevens</surname><orcid>0000-0001-8646-951X</orcid><order>4</order></author><author><firstname>Daniel</firstname><surname>Power</surname><order>5</order></author></authors><documents><document><filename>0049176-12092019151812.pdf</filename><originalFilename>49176.pdf</originalFilename><uploaded>2019-09-12T15:18:12.3670000</uploaded><type>Output</type><contentLength>8166385</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-09-12T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-09-12T15:24:01.6166615 v2 49176 2019-03-12 Extracting Lineage Information from Hand-Drawn Ancient Maps b334d40963c7a2f435f06d2c26c74e11 0000-0002-2701-8660 Xianghua Xie Xianghua Xie true false 24e42c4652a3104d12bc7424d475408d 0000-0001-8646-951X Matthew Stevens Matthew Stevens true false 2019-03-12 MACS In this paper, we present an efficient segmentation technique that extracts piecewise linear patterns from hand-drawn maps. The user is only required to place the starting and end points and the method is capable of extracting the route that connects the two, which closely colocates with the hand-drawn map. It provides an effective approach to interactively process and understand those historical maps. The proposed method employs supervised learning to evaluate at every pixel location the probability that such a lineage pattern exists, followed by shortest path segmentation to extract the border of interest. Conference Paper/Proceeding/Abstract Image Analysis and Recognition 9730 268 275 Springer International Publishing 978-3-319-41500-0 978-3-319-41501-7 0302-9743 1611-3349 computer vision, medieval history, maps 1 7 2016 2016-07-01 10.1007/978-3-319-41501-7_30 Authored by Ehab Essa, Xianghua Xie, Richard Turner, Matthew Stevens, and Daniel Power COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2019-09-12T15:24:01.6166615 2019-03-12T15:42:48.0701442 Ehab Essa 1 Xianghua Xie 0000-0002-2701-8660 2 Richard Turner 3 Matthew Stevens 0000-0001-8646-951X 4 Daniel Power 5 0049176-12092019151812.pdf 49176.pdf 2019-09-12T15:18:12.3670000 Output 8166385 application/pdf Accepted Manuscript true 2019-09-12T00:00:00.0000000 true eng |
title |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
spellingShingle |
Extracting Lineage Information from Hand-Drawn Ancient Maps Xianghua Xie Matthew Stevens |
title_short |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
title_full |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
title_fullStr |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
title_full_unstemmed |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
title_sort |
Extracting Lineage Information from Hand-Drawn Ancient Maps |
author_id_str_mv |
b334d40963c7a2f435f06d2c26c74e11 24e42c4652a3104d12bc7424d475408d |
author_id_fullname_str_mv |
b334d40963c7a2f435f06d2c26c74e11_***_Xianghua Xie 24e42c4652a3104d12bc7424d475408d_***_Matthew Stevens |
author |
Xianghua Xie Matthew Stevens |
author2 |
Ehab Essa Xianghua Xie Richard Turner Matthew Stevens Daniel Power |
format |
Conference Paper/Proceeding/Abstract |
container_title |
Image Analysis and Recognition |
container_volume |
9730 |
container_start_page |
268 |
publishDate |
2016 |
institution |
Swansea University |
isbn |
978-3-319-41500-0 978-3-319-41501-7 |
issn |
0302-9743 1611-3349 |
doi_str_mv |
10.1007/978-3-319-41501-7_30 |
publisher |
Springer International Publishing |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we present an efficient segmentation technique that extracts piecewise linear patterns from hand-drawn maps. The user is only required to place the starting and end points and the method is capable of extracting the route that connects the two, which closely colocates with the hand-drawn map. It provides an effective approach to interactively process and understand those historical maps. The proposed method employs supervised learning to evaluate at every pixel location the probability that such a lineage pattern exists, followed by shortest path segmentation to extract the border of interest. |
published_date |
2016-07-01T07:29:35Z |
_version_ |
1827006709899460608 |
score |
11.056895 |