No Cover Image

Journal article 131 views

Smart-release inhibition of corrosion driven organic coating failure on zinc by cationic benzotriazole based pigments / Geraint, Williams; Hamilton, McMurray

Corrosion Science

Swansesa University Authors: Geraint, Williams, Hamilton, McMurray

  • Accepted Manuscript under embargo until: 10th April 2020

Abstract

A novel cationic benzotriazole pigment (CBP) based on the benzotriazolium cation (BTAH2+) exchanged into a sulfonated organic resin has been synthesized and evaluated as a means of inhibiting the corrosion-driven cathodic disbondment of organic coatings from the surface of galvanized steel. The CBP...

Full description

Published in: Corrosion Science
ISSN: 0010-938X
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa49933
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: A novel cationic benzotriazole pigment (CBP) based on the benzotriazolium cation (BTAH2+) exchanged into a sulfonated organic resin has been synthesized and evaluated as a means of inhibiting the corrosion-driven cathodic disbondment of organic coatings from the surface of galvanized steel. The CBP is acidic in nature (BTAH2+ pKa ≈ 1.1) and is intended to be compatible with acidic coating formulations such as etch-primers. Delamination rates, as measured using a scanning Kelvin probe (SKP), were found to decrease monotonically with increasing CBP volume fraction (ΦCBP) and to approach zero when ΦCBP = 0.1. The mechanism of CBP operation is described.
Keywords: benzotriazole, corrosion, inhibition, zinc, galvanized steel
College: College of Engineering