Journal article 1869 views 111 downloads
An Ikehara-type theorem for functions convergent to zero
Comptes Rendus Mathematique, Volume: 357, Issue: 4, Pages: 333 - 338
Swansea University Author:
Dmitri Finkelshtein
-
PDF | Accepted Manuscript
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).
Download (389.81KB)
DOI (Published version): 10.1016/j.crma.2019.04.007
Abstract
We establish an analogue of the Ikehara theorem for positive non-increasing functions convergent to zero. In particular, this provides a complete proof to the results formulated in Diekmann/Kaper (1978) and Carr/Chmaj (2004), which are widely used nowadays to prove the uniqueness of traveling waves...
| Published in: | Comptes Rendus Mathematique |
|---|---|
| ISSN: | 1631-073X |
| Published: |
Elsevier BV
2019
|
| Online Access: |
Check full text
|
| URI: | https://cronfa.swan.ac.uk/Record/cronfa49983 |
| first_indexed |
2019-04-17T13:54:55Z |
|---|---|
| last_indexed |
2020-06-29T13:01:22Z |
| id |
cronfa49983 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-06-29T12:50:32.3504153</datestamp><bib-version>v2</bib-version><id>49983</id><entry>2019-04-12</entry><title>An Ikehara-type theorem for functions convergent to zero</title><swanseaauthors><author><sid>4dc251ebcd7a89a15b71c846cd0ddaaf</sid><ORCID>0000-0001-7136-9399</ORCID><firstname>Dmitri</firstname><surname>Finkelshtein</surname><name>Dmitri Finkelshtein</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-12</date><deptcode>MACS</deptcode><abstract>We establish an analogue of the Ikehara theorem for positive non-increasing functions convergent to zero. In particular, this provides a complete proof to the results formulated in Diekmann/Kaper (1978) and Carr/Chmaj (2004), which are widely used nowadays to prove the uniqueness of traveling waves for various reaction-diffusion equations.</abstract><type>Journal Article</type><journal>Comptes Rendus Mathematique</journal><volume>357</volume><journalNumber>4</journalNumber><paginationStart>333</paginationStart><paginationEnd>338</paginationEnd><publisher>Elsevier BV</publisher><issnPrint>1631-073X</issnPrint><keywords>Ikehara theorem, complex Tauberian theorem, Laplace transform, asymptotic behavior, traveling waves</keywords><publishedDay>1</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-04-01</publishedDate><doi>10.1016/j.crma.2019.04.007</doi><url>http://dx.doi.org/10.1016/j.crma.2019.04.007</url><notes/><college>COLLEGE NANME</college><department>Mathematics and Computer Science School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>MACS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-06-29T12:50:32.3504153</lastEdited><Created>2019-04-12T22:31:06.3321933</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Dmitri</firstname><surname>Finkelshtein</surname><orcid>0000-0001-7136-9399</orcid><order>1</order></author><author><firstname>Pasha</firstname><surname>Tkachov</surname><order>2</order></author></authors><documents><document><filename>0049983-12042019223144.pdf</filename><originalFilename>FT-Ikehara-Accepted.pdf</originalFilename><uploaded>2019-04-12T22:31:44.5330000</uploaded><type>Output</type><contentLength>394938</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-04-24T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
| spelling |
2020-06-29T12:50:32.3504153 v2 49983 2019-04-12 An Ikehara-type theorem for functions convergent to zero 4dc251ebcd7a89a15b71c846cd0ddaaf 0000-0001-7136-9399 Dmitri Finkelshtein Dmitri Finkelshtein true false 2019-04-12 MACS We establish an analogue of the Ikehara theorem for positive non-increasing functions convergent to zero. In particular, this provides a complete proof to the results formulated in Diekmann/Kaper (1978) and Carr/Chmaj (2004), which are widely used nowadays to prove the uniqueness of traveling waves for various reaction-diffusion equations. Journal Article Comptes Rendus Mathematique 357 4 333 338 Elsevier BV 1631-073X Ikehara theorem, complex Tauberian theorem, Laplace transform, asymptotic behavior, traveling waves 1 4 2019 2019-04-01 10.1016/j.crma.2019.04.007 http://dx.doi.org/10.1016/j.crma.2019.04.007 COLLEGE NANME Mathematics and Computer Science School COLLEGE CODE MACS Swansea University 2020-06-29T12:50:32.3504153 2019-04-12T22:31:06.3321933 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Dmitri Finkelshtein 0000-0001-7136-9399 1 Pasha Tkachov 2 0049983-12042019223144.pdf FT-Ikehara-Accepted.pdf 2019-04-12T22:31:44.5330000 Output 394938 application/pdf Accepted Manuscript true 2020-04-24T00:00:00.0000000 Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-ND). true eng |
| title |
An Ikehara-type theorem for functions convergent to zero |
| spellingShingle |
An Ikehara-type theorem for functions convergent to zero Dmitri Finkelshtein |
| title_short |
An Ikehara-type theorem for functions convergent to zero |
| title_full |
An Ikehara-type theorem for functions convergent to zero |
| title_fullStr |
An Ikehara-type theorem for functions convergent to zero |
| title_full_unstemmed |
An Ikehara-type theorem for functions convergent to zero |
| title_sort |
An Ikehara-type theorem for functions convergent to zero |
| author_id_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf |
| author_id_fullname_str_mv |
4dc251ebcd7a89a15b71c846cd0ddaaf_***_Dmitri Finkelshtein |
| author |
Dmitri Finkelshtein |
| author2 |
Dmitri Finkelshtein Pasha Tkachov |
| format |
Journal article |
| container_title |
Comptes Rendus Mathematique |
| container_volume |
357 |
| container_issue |
4 |
| container_start_page |
333 |
| publishDate |
2019 |
| institution |
Swansea University |
| issn |
1631-073X |
| doi_str_mv |
10.1016/j.crma.2019.04.007 |
| publisher |
Elsevier BV |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics |
| url |
http://dx.doi.org/10.1016/j.crma.2019.04.007 |
| document_store_str |
1 |
| active_str |
0 |
| description |
We establish an analogue of the Ikehara theorem for positive non-increasing functions convergent to zero. In particular, this provides a complete proof to the results formulated in Diekmann/Kaper (1978) and Carr/Chmaj (2004), which are widely used nowadays to prove the uniqueness of traveling waves for various reaction-diffusion equations. |
| published_date |
2019-04-01T04:38:42Z |
| _version_ |
1857436540237512704 |
| score |
11.461559 |

