Journal article 1200 views 160 downloads
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure
Metabolites, Volume: 9, Issue: 4, Start page: 74
Swansea University Author: Carole Llewellyn
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution License (CC-BY).
Download (2.99MB)
DOI (Published version): 10.3390/metabo9040074
Abstract
Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and ex...
Published in: | Metabolites |
---|---|
ISSN: | 2218-1989 |
Published: |
Basel, Switzerland
MDPI
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa50025 |
first_indexed |
2019-04-18T12:09:42Z |
---|---|
last_indexed |
2019-07-24T15:34:28Z |
id |
cronfa50025 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-07-24T10:33:12.3598381</datestamp><bib-version>v2</bib-version><id>50025</id><entry>2019-04-16</entry><title>Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure</title><swanseaauthors><author><sid>bcd94bda79ebf4c2c82d82dfb027a140</sid><firstname>Carole</firstname><surname>Llewellyn</surname><name>Carole Llewellyn</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-04-16</date><deptcode>BGPS</deptcode><abstract>Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m−2 s−1 of PAR plus 3 µmol m−2 s−1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m−2 s−1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography–mass spectrometry (GC–MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B</abstract><type>Journal Article</type><journal>Metabolites</journal><volume>9</volume><journalNumber>4</journalNumber><paginationStart>74</paginationStart><publisher>MDPI</publisher><placeOfPublication>Basel, Switzerland</placeOfPublication><issnElectronic>2218-1989</issnElectronic><keywords>cyanobacteria; C. fritschii; UV-B; PAR; time-series; intracellular; extracellular; metabolites;GC-MS</keywords><publishedDay>16</publishedDay><publishedMonth>4</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-04-16</publishedDate><doi>10.3390/metabo9040074</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-07-24T10:33:12.3598381</lastEdited><Created>2019-04-16T12:59:06.0318250</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Bethan</firstname><surname>Kultschar</surname><order>1</order></author><author><firstname>Ed</firstname><surname>Dudley</surname><order>2</order></author><author><firstname>Steve</firstname><surname>Wilson</surname><order>3</order></author><author><firstname>Carole</firstname><surname>Llewellyn</surname><order>4</order></author></authors><documents><document><filename>0050025-15052019090440.pdf</filename><originalFilename>50025.pdf</originalFilename><uploaded>2019-05-15T09:04:40.0270000</uploaded><type>Output</type><contentLength>3083705</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-05-14T00:00:00.0000000</embargoDate><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-07-24T10:33:12.3598381 v2 50025 2019-04-16 Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure bcd94bda79ebf4c2c82d82dfb027a140 Carole Llewellyn Carole Llewellyn true false 2019-04-16 BGPS Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m−2 s−1 of PAR plus 3 µmol m−2 s−1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m−2 s−1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography–mass spectrometry (GC–MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B Journal Article Metabolites 9 4 74 MDPI Basel, Switzerland 2218-1989 cyanobacteria; C. fritschii; UV-B; PAR; time-series; intracellular; extracellular; metabolites;GC-MS 16 4 2019 2019-04-16 10.3390/metabo9040074 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2019-07-24T10:33:12.3598381 2019-04-16T12:59:06.0318250 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Bethan Kultschar 1 Ed Dudley 2 Steve Wilson 3 Carole Llewellyn 4 0050025-15052019090440.pdf 50025.pdf 2019-05-15T09:04:40.0270000 Output 3083705 application/pdf Version of Record true 2019-05-14T00:00:00.0000000 Released under the terms of a Creative Commons Attribution License (CC-BY). true eng |
title |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
spellingShingle |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure Carole Llewellyn |
title_short |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
title_full |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
title_fullStr |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
title_full_unstemmed |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
title_sort |
Intracellular and Extracellular Metabolites from the Cyanobacterium Chlorogloeopsis fritschii, PCC 6912, During 48 Hours of UV-B Exposure |
author_id_str_mv |
bcd94bda79ebf4c2c82d82dfb027a140 |
author_id_fullname_str_mv |
bcd94bda79ebf4c2c82d82dfb027a140_***_Carole Llewellyn |
author |
Carole Llewellyn |
author2 |
Bethan Kultschar Ed Dudley Steve Wilson Carole Llewellyn |
format |
Journal article |
container_title |
Metabolites |
container_volume |
9 |
container_issue |
4 |
container_start_page |
74 |
publishDate |
2019 |
institution |
Swansea University |
issn |
2218-1989 |
doi_str_mv |
10.3390/metabo9040074 |
publisher |
MDPI |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences |
document_store_str |
1 |
active_str |
0 |
description |
Cyanobacteria have many defence strategies to overcome harmful ultraviolet (UV) stress including the production of secondary metabolites. Metabolomics can be used to investigate this altered metabolism via targeted and untargeted techniques. In this study we assessed the changes in the intra- and extracellular low molecular weight metabolite levels of Chlorogloeopsis fritschii (C. fritschii) during 48 h of photosynthetically active radiation (PAR) supplemented with UV-B (15 µmol m−2 s−1 of PAR plus 3 µmol m−2 s−1 of UV-B) and intracellular levels during 48 h of PAR only (15 µmol m−2 s−1) with sampling points at 0, 2, 6, 12, 24 and 48 h. Gas chromatography–mass spectrometry (GC–MS) was used as a metabolite profiling tool to investigate the global changes in metabolite levels. The UV-B time series experiment showed an overall significant reduction in intracellular metabolites involved with carbon and nitrogen metabolism such as the amino acids tyrosine and phenylalanine which have a role in secondary metabolite production. Significant accumulation of proline was observed with a potential role in stress mitigation as seen in other photosynthetic organisms. 12 commonly identified metabolites were measured in both UV-B exposed (PAR + UV-B) and PAR only experiments with differences in significance observed. Extracellular metabolites (PAR + UV-B) showed accumulation of sugars as seen in other cyanobacterial species as a stress response to UV-B. In conclusion, a snapshot of the metabolome of C. fritschii was measured. Little work has been undertaken on C. fritschii, a novel candidate for use in industrial biotechnology, with, to our knowledge, no previous literature on combined intra- and extracellular analysis during a UV-B treatment time-series. This study is important to build on experimental data already available for cyanobacteria and other photosynthetic organisms exposed to UV-B |
published_date |
2019-04-16T13:44:18Z |
_version_ |
1822047452657614848 |
score |
11.048453 |