No Cover Image

Journal article 915 views 119 downloads

Metabolism of Non-Enzymatically Derived Oxysterols: Clues from sterol metabolic disorders

Eylan Yutuc Orcid Logo, William Griffiths Orcid Logo, Eylan Yutuc, Jonas Abdel-Khalik, Peter J. Crick, Thomas Hearn, Alison Dickson, Brian W. Bigger, Teresa Hoi-Yee Wu, Anu Goenka, Arunabha Ghosh, Simon A. Jones, Douglas F. Covey, Daniel S. Ory, Yuqin Wang

Free Radical Biology and Medicine

Swansea University Authors: Eylan Yutuc Orcid Logo, William Griffiths Orcid Logo

  • 50061.pdf

    PDF | Version of Record

    This is an open access article distributed under a Creative Commons Attribution 4.0 (CC BY) license.

    Download (2.21MB)

Abstract

Cholestane-3β,5α,6β-triol (3β,5α,6β-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7β-hydroxycholesterol (7β-HC) can also be formed...

Full description

Published in: Free Radical Biology and Medicine
ISSN: 08915849
Published: Elsevier B.V. 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50061
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Cholestane-3β,5α,6β-triol (3β,5α,6β-triol) is formed from cholestan-5,6-epoxide (5,6-EC) in a reaction catalysed by cholesterol epoxide hydrolase, following formation of 5,6-EC through free radical oxidation of cholesterol. 7-Oxocholesterol (7-OC) and 7β-hydroxycholesterol (7β-HC) can also be formed by free radical oxidation of cholesterol. Here we investigate how 3β,5α,6β-triol, 7-OC and 7β-HC are metabolised to bile acids. We show, by monitoring oxysterol metabolites in plasma samples rich in 3β,5α,6β-triol, 7-OC and 7β-HC, that these three oxysterols fall into novel branches of the acidic pathway of bile acid biosynthesis becoming (25R)26-hydroxylated then carboxylated, 24-hydroxylated and side-chain shortened to give the final products 3β,5α,6β-trihydroxycholanoic, 3β-hydroxy-7-oxochol-5-enoic and 3β,7β-dihydroxychol-5-enoic acids, respectively. The intermediates in these pathways may be causative of some phenotypical features of, and/or have diagnostic value for, the lysosomal storage diseases, Niemann Pick types C and B and lysosomal acid lipase deficiency. Free radical derived oxysterols are metabolised in human to unusual bile acids via novel branches of the acidic pathway, intermediates in these pathways are observed in plasma.