No Cover Image

Journal article 992 views 119 downloads

Geometric universality and anomalous diffusion in frictional fingers

Kristian Stølevik Olsen Orcid Logo, Eirik Grude Flekkøy, Luiza Angheluta, James Matthew Campbell, Knut Jørgen Måløy, Bjornar Sandnes Orcid Logo

New Journal of Physics, Volume: 21, Issue: 6, Start page: 063020

Swansea University Author: Bjornar Sandnes Orcid Logo

Abstract

Frictional finger trees are patterns emerging from non-equilibrium processes in particle-fluid systems. Their formation share several properties with growth algorithms for minimal spanning trees in random energy landscapes. We propose that the frictional finger trees are indeed in the same geometric...

Full description

Published in: New Journal of Physics
ISSN: 1367-2630
Published: IOP Publishing 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa50586
first_indexed 2019-06-05T11:07:53Z
last_indexed 2023-01-11T14:27:04Z
id cronfa50586
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-05T13:27:02.5165472</datestamp><bib-version>v2</bib-version><id>50586</id><entry>2019-05-31</entry><title>Geometric universality and anomalous diffusion in frictional fingers</title><swanseaauthors><author><sid>61c7c04b5c804d9402caf4881e85234b</sid><ORCID>0000-0002-4854-5857</ORCID><firstname>Bjornar</firstname><surname>Sandnes</surname><name>Bjornar Sandnes</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-05-31</date><deptcode>EAAS</deptcode><abstract>Frictional finger trees are patterns emerging from non-equilibrium processes in particle-fluid systems. Their formation share several properties with growth algorithms for minimal spanning trees in random energy landscapes. We propose that the frictional finger trees are indeed in the same geometric universality class as the minimal spanning trees, which is checked using updated numerical simulation algorithms for frictional fingers. We also propose a theoretical model for anomalous diffusion in these patterns, and discuss the role of diffusion as a tool to classify geometry.</abstract><type>Journal Article</type><journal>New Journal of Physics</journal><volume>21</volume><journalNumber>6</journalNumber><paginationStart>063020</paginationStart><paginationEnd/><publisher>IOP Publishing</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic>1367-2630</issnElectronic><keywords/><publishedDay>17</publishedDay><publishedMonth>6</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-06-17</publishedDate><doi>10.1088/1367-2630/ab25bf</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering and Applied Sciences School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EAAS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2022-12-05T13:27:02.5165472</lastEdited><Created>2019-05-31T13:19:26.9794692</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Chemical Engineering</level></path><authors><author><firstname>Kristian St&#xF8;levik</firstname><surname>Olsen</surname><orcid>0000-0002-9982-6413</orcid><order>1</order></author><author><firstname>Eirik Grude</firstname><surname>Flekk&#xF8;y</surname><order>2</order></author><author><firstname>Luiza</firstname><surname>Angheluta</surname><order>3</order></author><author><firstname>James Matthew</firstname><surname>Campbell</surname><order>4</order></author><author><firstname>Knut J&#xF8;rgen</firstname><surname>M&#xE5;l&#xF8;y</surname><order>5</order></author><author><firstname>Bjornar</firstname><surname>Sandnes</surname><orcid>0000-0002-4854-5857</orcid><order>6</order></author></authors><documents><document><filename>0050586-24062019114045.pdf</filename><originalFilename>olsen2019(2)v2.pdf</originalFilename><uploaded>2019-06-24T11:40:45.0470000</uploaded><type>Output</type><contentLength>4942332</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><embargoDate>2019-06-24T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-05T13:27:02.5165472 v2 50586 2019-05-31 Geometric universality and anomalous diffusion in frictional fingers 61c7c04b5c804d9402caf4881e85234b 0000-0002-4854-5857 Bjornar Sandnes Bjornar Sandnes true false 2019-05-31 EAAS Frictional finger trees are patterns emerging from non-equilibrium processes in particle-fluid systems. Their formation share several properties with growth algorithms for minimal spanning trees in random energy landscapes. We propose that the frictional finger trees are indeed in the same geometric universality class as the minimal spanning trees, which is checked using updated numerical simulation algorithms for frictional fingers. We also propose a theoretical model for anomalous diffusion in these patterns, and discuss the role of diffusion as a tool to classify geometry. Journal Article New Journal of Physics 21 6 063020 IOP Publishing 1367-2630 17 6 2019 2019-06-17 10.1088/1367-2630/ab25bf COLLEGE NANME Engineering and Applied Sciences School COLLEGE CODE EAAS Swansea University 2022-12-05T13:27:02.5165472 2019-05-31T13:19:26.9794692 Faculty of Science and Engineering School of Engineering and Applied Sciences - Chemical Engineering Kristian Stølevik Olsen 0000-0002-9982-6413 1 Eirik Grude Flekkøy 2 Luiza Angheluta 3 James Matthew Campbell 4 Knut Jørgen Måløy 5 Bjornar Sandnes 0000-0002-4854-5857 6 0050586-24062019114045.pdf olsen2019(2)v2.pdf 2019-06-24T11:40:45.0470000 Output 4942332 application/pdf Version of Record true 2019-06-24T00:00:00.0000000 false eng
title Geometric universality and anomalous diffusion in frictional fingers
spellingShingle Geometric universality and anomalous diffusion in frictional fingers
Bjornar Sandnes
title_short Geometric universality and anomalous diffusion in frictional fingers
title_full Geometric universality and anomalous diffusion in frictional fingers
title_fullStr Geometric universality and anomalous diffusion in frictional fingers
title_full_unstemmed Geometric universality and anomalous diffusion in frictional fingers
title_sort Geometric universality and anomalous diffusion in frictional fingers
author_id_str_mv 61c7c04b5c804d9402caf4881e85234b
author_id_fullname_str_mv 61c7c04b5c804d9402caf4881e85234b_***_Bjornar Sandnes
author Bjornar Sandnes
author2 Kristian Stølevik Olsen
Eirik Grude Flekkøy
Luiza Angheluta
James Matthew Campbell
Knut Jørgen Måløy
Bjornar Sandnes
format Journal article
container_title New Journal of Physics
container_volume 21
container_issue 6
container_start_page 063020
publishDate 2019
institution Swansea University
issn 1367-2630
doi_str_mv 10.1088/1367-2630/ab25bf
publisher IOP Publishing
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Chemical Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Chemical Engineering
document_store_str 1
active_str 0
description Frictional finger trees are patterns emerging from non-equilibrium processes in particle-fluid systems. Their formation share several properties with growth algorithms for minimal spanning trees in random energy landscapes. We propose that the frictional finger trees are indeed in the same geometric universality class as the minimal spanning trees, which is checked using updated numerical simulation algorithms for frictional fingers. We also propose a theoretical model for anomalous diffusion in these patterns, and discuss the role of diffusion as a tool to classify geometry.
published_date 2019-06-17T13:42:46Z
_version_ 1821956759323934720
score 11.048149