Journal article 1031 views 1013 downloads
Functional materials in desalination: A review
Shaheen Fatima Anis,
Raed Hashaikeh,
Nidal Hilal
Desalination, Volume: 468, Start page: 114077
Swansea University Author: Nidal Hilal
-
PDF | Accepted Manuscript
Download (3.72MB)
DOI (Published version): 10.1016/j.desal.2019.114077
Abstract
This paper reviews various functional materials used in desalination. Desalination of the abundant seawater resource has emerged as a promising technology to meet the current fresh water demands. For improved performance, often functional materials such as photocatalysts, electrocatalysts, photother...
Published in: | Desalination |
---|---|
ISSN: | 0011-9164 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa51081 |
first_indexed |
2019-07-12T21:37:58Z |
---|---|
last_indexed |
2019-08-09T16:31:13Z |
id |
cronfa51081 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-08-05T09:16:54.8295134</datestamp><bib-version>v2</bib-version><id>51081</id><entry>2019-07-12</entry><title>Functional materials in desalination: A review</title><swanseaauthors><author><sid>3acba771241d878c8e35ff464aec0342</sid><firstname>Nidal</firstname><surname>Hilal</surname><name>Nidal Hilal</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-07-12</date><abstract>This paper reviews various functional materials used in desalination. Desalination of the abundant seawater resource has emerged as a promising technology to meet the current fresh water demands. For improved performance, often functional materials such as photocatalysts, electrocatalysts, photothermal materials, sorbents, antibacterial materials and magnetic materials are utilized in thermal, membrane-based and other desalination technologies. With an aim to provide an insight on the existing research on functional materials and the purpose behind using such in desalination, this review collates different research studies of various functional properties and the subsequent materials utilized for those properties. New generation materials such as carbon nanotubes (CNTs) and graphene form a major part, where they exhibit multiple functionalities with improved water transport properties, and thus have been deemed as very attractive enhancers to the desalination technology. Nevertheless, most of the functional materials, such as nano-TiO2, nano-zeolites, graphene, CNTs and magnetic nanoparticles suffer from several limitations such as specialized synthesis techniques, agglomeration, leaching and environmental and health concerns. This review focuses on such challenges and suggests improvements for enhanced incorporation of these in the desalination technology. Lastly, emerging new technologies, advanced fabrication methods and novel functional hybrid materials are reviewed to equip the readers with the latest research trends. Thus, a comprehensive review is essential which will provide current and future researchers an insight on the importance and significance of utilizing functional materials in various desalination technologies.</abstract><type>Journal Article</type><journal>Desalination</journal><volume>468</volume><paginationStart>114077</paginationStart><publisher/><issnPrint>0011-9164</issnPrint><keywords>Desalination, Photocatalysts, Electrocatalyst, Antimicrobial, Magnetic, Antimicrobial, Sorbents.</keywords><publishedDay>15</publishedDay><publishedMonth>10</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-10-15</publishedDate><doi>10.1016/j.desal.2019.114077</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-08-05T09:16:54.8295134</lastEdited><Created>2019-07-12T19:48:41.5496743</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Shaheen Fatima</firstname><surname>Anis</surname><order>1</order></author><author><firstname>Raed</firstname><surname>Hashaikeh</surname><order>2</order></author><author><firstname>Nidal</firstname><surname>Hilal</surname><order>3</order></author></authors><documents><document><filename>0051081-05082019091619.pdf</filename><originalFilename>anis2019.pdf</originalFilename><uploaded>2019-08-05T09:16:19.4400000</uploaded><type>Output</type><contentLength>3934091</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-07-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-08-05T09:16:54.8295134 v2 51081 2019-07-12 Functional materials in desalination: A review 3acba771241d878c8e35ff464aec0342 Nidal Hilal Nidal Hilal true false 2019-07-12 This paper reviews various functional materials used in desalination. Desalination of the abundant seawater resource has emerged as a promising technology to meet the current fresh water demands. For improved performance, often functional materials such as photocatalysts, electrocatalysts, photothermal materials, sorbents, antibacterial materials and magnetic materials are utilized in thermal, membrane-based and other desalination technologies. With an aim to provide an insight on the existing research on functional materials and the purpose behind using such in desalination, this review collates different research studies of various functional properties and the subsequent materials utilized for those properties. New generation materials such as carbon nanotubes (CNTs) and graphene form a major part, where they exhibit multiple functionalities with improved water transport properties, and thus have been deemed as very attractive enhancers to the desalination technology. Nevertheless, most of the functional materials, such as nano-TiO2, nano-zeolites, graphene, CNTs and magnetic nanoparticles suffer from several limitations such as specialized synthesis techniques, agglomeration, leaching and environmental and health concerns. This review focuses on such challenges and suggests improvements for enhanced incorporation of these in the desalination technology. Lastly, emerging new technologies, advanced fabrication methods and novel functional hybrid materials are reviewed to equip the readers with the latest research trends. Thus, a comprehensive review is essential which will provide current and future researchers an insight on the importance and significance of utilizing functional materials in various desalination technologies. Journal Article Desalination 468 114077 0011-9164 Desalination, Photocatalysts, Electrocatalyst, Antimicrobial, Magnetic, Antimicrobial, Sorbents. 15 10 2019 2019-10-15 10.1016/j.desal.2019.114077 COLLEGE NANME COLLEGE CODE Swansea University 2019-08-05T09:16:54.8295134 2019-07-12T19:48:41.5496743 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Shaheen Fatima Anis 1 Raed Hashaikeh 2 Nidal Hilal 3 0051081-05082019091619.pdf anis2019.pdf 2019-08-05T09:16:19.4400000 Output 3934091 application/pdf Accepted Manuscript true 2020-07-20T00:00:00.0000000 true eng |
title |
Functional materials in desalination: A review |
spellingShingle |
Functional materials in desalination: A review Nidal Hilal |
title_short |
Functional materials in desalination: A review |
title_full |
Functional materials in desalination: A review |
title_fullStr |
Functional materials in desalination: A review |
title_full_unstemmed |
Functional materials in desalination: A review |
title_sort |
Functional materials in desalination: A review |
author_id_str_mv |
3acba771241d878c8e35ff464aec0342 |
author_id_fullname_str_mv |
3acba771241d878c8e35ff464aec0342_***_Nidal Hilal |
author |
Nidal Hilal |
author2 |
Shaheen Fatima Anis Raed Hashaikeh Nidal Hilal |
format |
Journal article |
container_title |
Desalination |
container_volume |
468 |
container_start_page |
114077 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0011-9164 |
doi_str_mv |
10.1016/j.desal.2019.114077 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
This paper reviews various functional materials used in desalination. Desalination of the abundant seawater resource has emerged as a promising technology to meet the current fresh water demands. For improved performance, often functional materials such as photocatalysts, electrocatalysts, photothermal materials, sorbents, antibacterial materials and magnetic materials are utilized in thermal, membrane-based and other desalination technologies. With an aim to provide an insight on the existing research on functional materials and the purpose behind using such in desalination, this review collates different research studies of various functional properties and the subsequent materials utilized for those properties. New generation materials such as carbon nanotubes (CNTs) and graphene form a major part, where they exhibit multiple functionalities with improved water transport properties, and thus have been deemed as very attractive enhancers to the desalination technology. Nevertheless, most of the functional materials, such as nano-TiO2, nano-zeolites, graphene, CNTs and magnetic nanoparticles suffer from several limitations such as specialized synthesis techniques, agglomeration, leaching and environmental and health concerns. This review focuses on such challenges and suggests improvements for enhanced incorporation of these in the desalination technology. Lastly, emerging new technologies, advanced fabrication methods and novel functional hybrid materials are reviewed to equip the readers with the latest research trends. Thus, a comprehensive review is essential which will provide current and future researchers an insight on the importance and significance of utilizing functional materials in various desalination technologies. |
published_date |
2019-10-15T19:53:17Z |
_version_ |
1821980070241107968 |
score |
11.048042 |