No Cover Image

Journal article 657 views 117 downloads

Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry

Iain Aldous, Laurence J. Hardwick

Angewandte Chemie International Edition, Volume: 55, Issue: 29, Pages: 8254 - 8257

Swansea University Author: Iain Aldous

  • Aldous2019.pdf

    PDF | Version of Record

    Released under the terms of a Creative Commons Attribution License (CC-BY).

    Download (1.17MB)

Check full text

DOI (Published version): 10.1002/anie.201601615

Abstract

The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium–oxygen batt...

Full description

Published in: Angewandte Chemie International Edition
ISSN: 1433-7851
Published: Wiley 2016
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51335
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-08-09T16:32:04Z
last_indexed 2023-02-22T03:59:19Z
id cronfa51335
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-02-21T16:36:35.0617115</datestamp><bib-version>v2</bib-version><id>51335</id><entry>2019-08-06</entry><title>Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry</title><swanseaauthors><author><sid>87867d675f1cd66804b1c6c2626cac24</sid><firstname>Iain</firstname><surname>Aldous</surname><name>Iain Aldous</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-06</date><deptcode>CHEG</deptcode><abstract>The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium&#x2013;oxygen batteries (NaO2: 1071&#x2005;Wh&#x2009;kg&#x2212;1 and Na2O2: 1505&#x2005;Wh&#x2009;kg&#x2212;1). Through spectroelectrochemical analysis of a range of non&#x2010;aqueous solvents, we describe the dependence of these processes on the electrolyte solvent and subsequent interactions formed between Na+ and O2&#x2212;. The solvents ability to form and remove [Na+&#x2010;O2&#x2212;]ads based on Gutmann donor number influences the final discharge product and mechanism of the cell. Utilizing surface&#x2010;enhanced Raman spectroscopy and electrochemical techniques, we demonstrate an analysis of the response of Na&#x2010;O2 cell chemistry with sulfoxide, amide, ether, and nitrile electrolyte solvents.</abstract><type>Journal Article</type><journal>Angewandte Chemie International Edition</journal><volume>55</volume><journalNumber>29</journalNumber><paginationStart>8254</paginationStart><paginationEnd>8257</paginationEnd><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>1433-7851</issnPrint><issnElectronic/><keywords/><publishedDay>11</publishedDay><publishedMonth>7</publishedMonth><publishedYear>2016</publishedYear><publishedDate>2016-07-11</publishedDate><doi>10.1002/anie.201601615</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-02-21T16:36:35.0617115</lastEdited><Created>2019-08-06T21:12:06.4239950</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Materials Science and Engineering</level></path><authors><author><firstname>Iain</firstname><surname>Aldous</surname><order>1</order></author><author><firstname>Laurence J.</firstname><surname>Hardwick</surname><order>2</order></author></authors><documents><document><filename>0051335-07082019120122.pdf</filename><originalFilename>Aldous2019.pdf</originalFilename><uploaded>2019-08-07T12:01:22.1970000</uploaded><type>Output</type><contentLength>1233055</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><documentNotes>Released under the terms of a Creative Commons Attribution License (CC-BY).</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language><licence>http://creativecommons.org/licenses/by/4.0/</licence></document></documents><OutputDurs/></rfc1807>
spelling 2023-02-21T16:36:35.0617115 v2 51335 2019-08-06 Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry 87867d675f1cd66804b1c6c2626cac24 Iain Aldous Iain Aldous true false 2019-08-06 CHEG The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium–oxygen batteries (NaO2: 1071 Wh kg−1 and Na2O2: 1505 Wh kg−1). Through spectroelectrochemical analysis of a range of non‐aqueous solvents, we describe the dependence of these processes on the electrolyte solvent and subsequent interactions formed between Na+ and O2−. The solvents ability to form and remove [Na+‐O2−]ads based on Gutmann donor number influences the final discharge product and mechanism of the cell. Utilizing surface‐enhanced Raman spectroscopy and electrochemical techniques, we demonstrate an analysis of the response of Na‐O2 cell chemistry with sulfoxide, amide, ether, and nitrile electrolyte solvents. Journal Article Angewandte Chemie International Edition 55 29 8254 8257 Wiley 1433-7851 11 7 2016 2016-07-11 10.1002/anie.201601615 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2023-02-21T16:36:35.0617115 2019-08-06T21:12:06.4239950 Faculty of Science and Engineering School of Engineering and Applied Sciences - Materials Science and Engineering Iain Aldous 1 Laurence J. Hardwick 2 0051335-07082019120122.pdf Aldous2019.pdf 2019-08-07T12:01:22.1970000 Output 1233055 application/pdf Version of Record true Released under the terms of a Creative Commons Attribution License (CC-BY). true eng http://creativecommons.org/licenses/by/4.0/
title Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
spellingShingle Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
Iain Aldous
title_short Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
title_full Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
title_fullStr Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
title_full_unstemmed Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
title_sort Solvent-Mediated Control of the Electrochemical Discharge Products of Non-Aqueous Sodium-Oxygen Electrochemistry
author_id_str_mv 87867d675f1cd66804b1c6c2626cac24
author_id_fullname_str_mv 87867d675f1cd66804b1c6c2626cac24_***_Iain Aldous
author Iain Aldous
author2 Iain Aldous
Laurence J. Hardwick
format Journal article
container_title Angewandte Chemie International Edition
container_volume 55
container_issue 29
container_start_page 8254
publishDate 2016
institution Swansea University
issn 1433-7851
doi_str_mv 10.1002/anie.201601615
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Engineering and Applied Sciences - Materials Science and Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Materials Science and Engineering
document_store_str 1
active_str 0
description The reduction of dioxygen in the presence of sodium cations can be tuned to give either sodium superoxide or sodium peroxide discharge products at the electrode surface. Control of the mechanistic direction of these processes may enhance the ability to tailor the energy density of sodium–oxygen batteries (NaO2: 1071 Wh kg−1 and Na2O2: 1505 Wh kg−1). Through spectroelectrochemical analysis of a range of non‐aqueous solvents, we describe the dependence of these processes on the electrolyte solvent and subsequent interactions formed between Na+ and O2−. The solvents ability to form and remove [Na+‐O2−]ads based on Gutmann donor number influences the final discharge product and mechanism of the cell. Utilizing surface‐enhanced Raman spectroscopy and electrochemical techniques, we demonstrate an analysis of the response of Na‐O2 cell chemistry with sulfoxide, amide, ether, and nitrile electrolyte solvents.
published_date 2016-07-11T04:03:11Z
_version_ 1763753267198689280
score 11.036706