Journal article 1143 views 278 downloads
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments
Computational Particle Mechanics, Volume: 7, Issue: 3, Pages: 509 - 522
Swansea University Author: Yuntian Feng
-
PDF | Accepted Manuscript
Download (2.37MB)
DOI (Published version): 10.1007/s40571-019-00276-7
Abstract
This paper presents a hybrid discrete bubble-lattice Boltzmann–discrete element modelling framework for simulating gas-charged sediments, especially in the seabed. A discrete bubble model proposed in chemical engineering is adapted in the coupled discrete element/lattice Boltzmann method to model th...
Published in: | Computational Particle Mechanics |
---|---|
ISSN: | 2196-4378 2196-4386 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa51394 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-08-14T15:32:33Z |
---|---|
last_indexed |
2021-09-02T03:11:02Z |
id |
cronfa51394 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2021-09-01T20:15:29.1812171</datestamp><bib-version>v2</bib-version><id>51394</id><entry>2019-08-14</entry><title>A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments</title><swanseaauthors><author><sid>d66794f9c1357969a5badf654f960275</sid><ORCID>0000-0002-6396-8698</ORCID><firstname>Yuntian</firstname><surname>Feng</surname><name>Yuntian Feng</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-14</date><deptcode>CIVL</deptcode><abstract>This paper presents a hybrid discrete bubble-lattice Boltzmann–discrete element modelling framework for simulating gas-charged sediments, especially in the seabed. A discrete bubble model proposed in chemical engineering is adapted in the coupled discrete element/lattice Boltzmann method to model the migration of gas bubbles in saturated sediments involving interactions between gas bubbles and fluid/solid phases. Surface tension is introduced into the discrete bubble model in this work, so that it can handle the complex gas–fluid–solid interface. The lattice Boltzmann and discrete element methods are, respectively, employed to simulate fluid flows and mechanical behaviours of sediments. A velocity interpolation-based immerse boundary method is utilised to resolve the coupling between the fluid flow and the solid/gas phase. The proposed technique is preliminarily validated using simulations of bubble migration in fluids, which is followed by high-resolution investigations of the transport of a gas bubble in seabed sediments. It is demonstrated that this hybrid method can reproduce, to a certain degree, the characters of bubbles moving in seabed sediment tests.</abstract><type>Journal Article</type><journal>Computational Particle Mechanics</journal><volume>7</volume><journalNumber>3</journalNumber><paginationStart>509</paginationStart><paginationEnd>522</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2196-4378</issnPrint><issnElectronic>2196-4386</issnElectronic><keywords>Discrete bubble model, Fluid–solid–bubble interaction, Lattice Boltzmann method, Discrete element method, Bond model, Immersed boundary method</keywords><publishedDay>1</publishedDay><publishedMonth>5</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-05-01</publishedDate><doi>10.1007/s40571-019-00276-7</doi><url>http://dx.doi.org/10.1007/s40571-019-00276-7</url><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-01T20:15:29.1812171</lastEdited><Created>2019-08-14T13:35:39.6173593</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering</level></path><authors><author><firstname>Min</firstname><surname>Wang</surname><order>1</order></author><author><firstname>Yuntian</firstname><surname>Feng</surname><orcid>0000-0002-6396-8698</orcid><order>2</order></author><author><firstname>Yong</firstname><surname>Wang</surname><order>3</order></author><author><firstname>T. M.</firstname><surname>Qu</surname><order>4</order></author><author><firstname>Wei</firstname><surname>He</surname><order>5</order></author></authors><documents><document><filename>0051394-14082019133701.pdf</filename><originalFilename>wang2019(3).pdf</originalFilename><uploaded>2019-08-14T13:37:01.1070000</uploaded><type>Output</type><contentLength>2454693</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-08-18T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2021-09-01T20:15:29.1812171 v2 51394 2019-08-14 A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments d66794f9c1357969a5badf654f960275 0000-0002-6396-8698 Yuntian Feng Yuntian Feng true false 2019-08-14 CIVL This paper presents a hybrid discrete bubble-lattice Boltzmann–discrete element modelling framework for simulating gas-charged sediments, especially in the seabed. A discrete bubble model proposed in chemical engineering is adapted in the coupled discrete element/lattice Boltzmann method to model the migration of gas bubbles in saturated sediments involving interactions between gas bubbles and fluid/solid phases. Surface tension is introduced into the discrete bubble model in this work, so that it can handle the complex gas–fluid–solid interface. The lattice Boltzmann and discrete element methods are, respectively, employed to simulate fluid flows and mechanical behaviours of sediments. A velocity interpolation-based immerse boundary method is utilised to resolve the coupling between the fluid flow and the solid/gas phase. The proposed technique is preliminarily validated using simulations of bubble migration in fluids, which is followed by high-resolution investigations of the transport of a gas bubble in seabed sediments. It is demonstrated that this hybrid method can reproduce, to a certain degree, the characters of bubbles moving in seabed sediment tests. Journal Article Computational Particle Mechanics 7 3 509 522 Springer Science and Business Media LLC 2196-4378 2196-4386 Discrete bubble model, Fluid–solid–bubble interaction, Lattice Boltzmann method, Discrete element method, Bond model, Immersed boundary method 1 5 2020 2020-05-01 10.1007/s40571-019-00276-7 http://dx.doi.org/10.1007/s40571-019-00276-7 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2021-09-01T20:15:29.1812171 2019-08-14T13:35:39.6173593 Faculty of Science and Engineering School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering Min Wang 1 Yuntian Feng 0000-0002-6396-8698 2 Yong Wang 3 T. M. Qu 4 Wei He 5 0051394-14082019133701.pdf wang2019(3).pdf 2019-08-14T13:37:01.1070000 Output 2454693 application/pdf Accepted Manuscript true 2020-08-18T00:00:00.0000000 false eng |
title |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
spellingShingle |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments Yuntian Feng |
title_short |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
title_full |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
title_fullStr |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
title_full_unstemmed |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
title_sort |
A hybrid discrete bubble-lattice Boltzmann–discrete element model for gas-charged sediments |
author_id_str_mv |
d66794f9c1357969a5badf654f960275 |
author_id_fullname_str_mv |
d66794f9c1357969a5badf654f960275_***_Yuntian Feng |
author |
Yuntian Feng |
author2 |
Min Wang Yuntian Feng Yong Wang T. M. Qu Wei He |
format |
Journal article |
container_title |
Computational Particle Mechanics |
container_volume |
7 |
container_issue |
3 |
container_start_page |
509 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2196-4378 2196-4386 |
doi_str_mv |
10.1007/s40571-019-00276-7 |
publisher |
Springer Science and Business Media LLC |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Aerospace, Civil, Electrical, General and Mechanical Engineering - Civil Engineering |
url |
http://dx.doi.org/10.1007/s40571-019-00276-7 |
document_store_str |
1 |
active_str |
0 |
description |
This paper presents a hybrid discrete bubble-lattice Boltzmann–discrete element modelling framework for simulating gas-charged sediments, especially in the seabed. A discrete bubble model proposed in chemical engineering is adapted in the coupled discrete element/lattice Boltzmann method to model the migration of gas bubbles in saturated sediments involving interactions between gas bubbles and fluid/solid phases. Surface tension is introduced into the discrete bubble model in this work, so that it can handle the complex gas–fluid–solid interface. The lattice Boltzmann and discrete element methods are, respectively, employed to simulate fluid flows and mechanical behaviours of sediments. A velocity interpolation-based immerse boundary method is utilised to resolve the coupling between the fluid flow and the solid/gas phase. The proposed technique is preliminarily validated using simulations of bubble migration in fluids, which is followed by high-resolution investigations of the transport of a gas bubble in seabed sediments. It is demonstrated that this hybrid method can reproduce, to a certain degree, the characters of bubbles moving in seabed sediment tests. |
published_date |
2020-05-01T04:03:15Z |
_version_ |
1763753271839686656 |
score |
11.036706 |