Journal article 683 views 270 downloads
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures
Farah Ejaz Ahmed,
Raed Hashaikeh,
Nidal Hilal
Desalination, Volume: 470, Start page: 114118
Swansea University Author: Nidal Hilal
-
PDF | Accepted Manuscript
Download (1.21MB)
DOI (Published version): 10.1016/j.desal.2019.114118
Abstract
A conductive form of networked cellulose, prepared by incorporating carbon nanotubes, has been used in polyvinyl alcohol (PVA) membranes for reverse osmosis. The use of networked cellulose and carbon nanostructures (CNS) not only helps control the thermal, mechanical and electrical properties of the...
Published in: | Desalination |
---|---|
ISSN: | 0011-9164 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa51482 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-08-21T15:33:40Z |
---|---|
last_indexed |
2019-09-03T14:51:45Z |
id |
cronfa51482 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-09-03T09:50:13.4661690</datestamp><bib-version>v2</bib-version><id>51482</id><entry>2019-08-19</entry><title>Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures</title><swanseaauthors><author><sid>3acba771241d878c8e35ff464aec0342</sid><firstname>Nidal</firstname><surname>Hilal</surname><name>Nidal Hilal</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-19</date><deptcode>FGSEN</deptcode><abstract>A conductive form of networked cellulose, prepared by incorporating carbon nanotubes, has been used in polyvinyl alcohol (PVA) membranes for reverse osmosis. The use of networked cellulose and carbon nanostructures (CNS) not only helps control the thermal, mechanical and electrical properties of the membrane, but also enhances RO performance and allows the membrane surface to be cleaned electrolytically. High surface area multi-walled CNTs become trapped in the structure of networked cellulose. The modified material has greater tensile strength and elastic modulus, indicating an improvement in the mechanical properties of the membrane. Membranes with CNS demonstrate enhanced electrocatalytic activity when tested for hydrogen evolution in an acidic medium. The membranes are successfully applied to reverse osmosis using a feed of 25000 ppm NaCl, where the membranes with 7 wt. % CNS exhibited a 93% increase in flux compared to PVA-NC with no CNS, due to the nanotubes disrupting the compression of polymer chains under pressure. The membrane surface was recovered after fouling via electrolytic cleaning where the membrane was used as the cathode and a potential of -5V was applied for 20 minutes. All membranes retained a high salt rejection above 99.8%.</abstract><type>Journal Article</type><journal>Desalination</journal><volume>470</volume><paginationStart>114118</paginationStart><publisher/><issnPrint>0011-9164</issnPrint><keywords>reverse osmosis, carbon nanotubes, cellulose, electrically conductive membrane</keywords><publishedDay>15</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-15</publishedDate><doi>10.1016/j.desal.2019.114118</doi><url/><notes/><college>COLLEGE NANME</college><department>Science and Engineering - Faculty</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>FGSEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-09-03T09:50:13.4661690</lastEdited><Created>2019-08-19T15:32:09.4602622</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>Farah Ejaz</firstname><surname>Ahmed</surname><order>1</order></author><author><firstname>Raed</firstname><surname>Hashaikeh</surname><order>2</order></author><author><firstname>Nidal</firstname><surname>Hilal</surname><order>3</order></author></authors><documents><document><filename>0051482-03092019094946.pdf</filename><originalFilename>ahmed2019(2).pdf</originalFilename><uploaded>2019-09-03T09:49:46.6370000</uploaded><type>Output</type><contentLength>1251249</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-08-31T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-09-03T09:50:13.4661690 v2 51482 2019-08-19 Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures 3acba771241d878c8e35ff464aec0342 Nidal Hilal Nidal Hilal true false 2019-08-19 FGSEN A conductive form of networked cellulose, prepared by incorporating carbon nanotubes, has been used in polyvinyl alcohol (PVA) membranes for reverse osmosis. The use of networked cellulose and carbon nanostructures (CNS) not only helps control the thermal, mechanical and electrical properties of the membrane, but also enhances RO performance and allows the membrane surface to be cleaned electrolytically. High surface area multi-walled CNTs become trapped in the structure of networked cellulose. The modified material has greater tensile strength and elastic modulus, indicating an improvement in the mechanical properties of the membrane. Membranes with CNS demonstrate enhanced electrocatalytic activity when tested for hydrogen evolution in an acidic medium. The membranes are successfully applied to reverse osmosis using a feed of 25000 ppm NaCl, where the membranes with 7 wt. % CNS exhibited a 93% increase in flux compared to PVA-NC with no CNS, due to the nanotubes disrupting the compression of polymer chains under pressure. The membrane surface was recovered after fouling via electrolytic cleaning where the membrane was used as the cathode and a potential of -5V was applied for 20 minutes. All membranes retained a high salt rejection above 99.8%. Journal Article Desalination 470 114118 0011-9164 reverse osmosis, carbon nanotubes, cellulose, electrically conductive membrane 15 11 2019 2019-11-15 10.1016/j.desal.2019.114118 COLLEGE NANME Science and Engineering - Faculty COLLEGE CODE FGSEN Swansea University 2019-09-03T09:50:13.4661690 2019-08-19T15:32:09.4602622 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised Farah Ejaz Ahmed 1 Raed Hashaikeh 2 Nidal Hilal 3 0051482-03092019094946.pdf ahmed2019(2).pdf 2019-09-03T09:49:46.6370000 Output 1251249 application/pdf Accepted Manuscript true 2020-08-31T00:00:00.0000000 true eng |
title |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
spellingShingle |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures Nidal Hilal |
title_short |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
title_full |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
title_fullStr |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
title_full_unstemmed |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
title_sort |
Fouling control in reverse osmosis membranes through modification with conductive carbon nanostructures |
author_id_str_mv |
3acba771241d878c8e35ff464aec0342 |
author_id_fullname_str_mv |
3acba771241d878c8e35ff464aec0342_***_Nidal Hilal |
author |
Nidal Hilal |
author2 |
Farah Ejaz Ahmed Raed Hashaikeh Nidal Hilal |
format |
Journal article |
container_title |
Desalination |
container_volume |
470 |
container_start_page |
114118 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0011-9164 |
doi_str_mv |
10.1016/j.desal.2019.114118 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
A conductive form of networked cellulose, prepared by incorporating carbon nanotubes, has been used in polyvinyl alcohol (PVA) membranes for reverse osmosis. The use of networked cellulose and carbon nanostructures (CNS) not only helps control the thermal, mechanical and electrical properties of the membrane, but also enhances RO performance and allows the membrane surface to be cleaned electrolytically. High surface area multi-walled CNTs become trapped in the structure of networked cellulose. The modified material has greater tensile strength and elastic modulus, indicating an improvement in the mechanical properties of the membrane. Membranes with CNS demonstrate enhanced electrocatalytic activity when tested for hydrogen evolution in an acidic medium. The membranes are successfully applied to reverse osmosis using a feed of 25000 ppm NaCl, where the membranes with 7 wt. % CNS exhibited a 93% increase in flux compared to PVA-NC with no CNS, due to the nanotubes disrupting the compression of polymer chains under pressure. The membrane surface was recovered after fouling via electrolytic cleaning where the membrane was used as the cathode and a potential of -5V was applied for 20 minutes. All membranes retained a high salt rejection above 99.8%. |
published_date |
2019-11-15T04:03:22Z |
_version_ |
1763753279108415488 |
score |
11.035634 |