Journal article 613 views 446 downloads
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels
Journal of Magnetism and Magnetic Materials, Start page: 165772
Swansea University Author: Soran Birosca
-
PDF | Accepted Manuscript
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Download (14.93MB)
DOI (Published version): 10.1016/j.jmmm.2019.165772
Abstract
The deviation angle of the easy magnetisation <001>-axes from the rolling direction (RD) strongly affects the magnetic domain configuration within individual grains and hence the overall magnetic properties in grain oriented electrical steels (GOES). In the current study, both angles of deviat...
Published in: | Journal of Magnetism and Magnetic Materials |
---|---|
ISSN: | 0304-8853 |
Published: |
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa51634 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-08-30T14:48:43Z |
---|---|
last_indexed |
2019-09-10T15:31:13Z |
id |
cronfa51634 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2019-09-10T13:12:23.9448961</datestamp><bib-version>v2</bib-version><id>51634</id><entry>2019-08-30</entry><title>On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels</title><swanseaauthors><author><sid>3445603fcc2ff9d27b476a73b223a507</sid><ORCID>0000-0002-8380-771X</ORCID><firstname>Soran</firstname><surname>Birosca</surname><name>Soran Birosca</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-30</date><deptcode>EEN</deptcode><abstract>The deviation angle of the easy magnetisation <001>-axes from the rolling direction (RD) strongly affects the magnetic domain configuration within individual grains and hence the overall magnetic properties in grain oriented electrical steels (GOES). In the current study, both angles of deviations; α: the angle between <001> and in-plane rolling direction, and β: the angle between <001> and out-plane rolling direction, where calculated using electron backscatter diffraction (EBSD) raw data to investigate the exact correlation between the crystal orientation and magnetic domain structure. Further, EBSD combined with forescatter detector (FSD) is used to reveal the magnetic domain configuration within individual oriented grains. The microstructure and microtexture of various GOESs with different chemical compositions and magnetic properties were characterised. The magnetic domain patterns were directly imaged and correlated to the crystal orientation and α and β deviation angles. It is demonstrated that the crystal orientation has a great impact on the magnetic domain patterns, width, and configurations. It was also shown that the grain boundary characteristics have a significant influence on the magnetic domain transfer between neighbouring grains. It was evident that low angle grain boundaries allowed domain transfer without a significant change in the domain pattern, whereas high angle grain boundaries perturbed the magnetic domain pattern, width, and configuration. Furthermore, it was demonstrated that the size of the deviated orientation grains from ideal (110) <001> GOSS orientation is a critical microtexture parameter for the optimisation of magnetic property. Finally, it is concluded that the magnetic domain patterns and α and β angle of deviations are strongly correlated to the magnetic losses in GOES.</abstract><type>Journal Article</type><journal>Journal of Magnetism and Magnetic Materials</journal><paginationStart>165772</paginationStart><publisher/><issnPrint>0304-8853</issnPrint><keywords>EBSD, Forescatter Imaging, GO Electrical Steels, Magnetic Domain</keywords><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-12-31</publishedDate><doi>10.1016/j.jmmm.2019.165772</doi><url/><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-09-10T13:12:23.9448961</lastEdited><Created>2019-08-30T11:34:50.6067111</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Engineering and Applied Sciences - Uncategorised</level></path><authors><author><firstname>A.</firstname><surname>Nadoum</surname><order>1</order></author><author><firstname>F.</firstname><surname>Robinson</surname><order>2</order></author><author><firstname>S.</firstname><surname>Birosca</surname><order>3</order></author><author><firstname>Soran</firstname><surname>Birosca</surname><orcid>0000-0002-8380-771X</orcid><order>4</order></author></authors><documents><document><filename>0051634-30082019113625.pdf</filename><originalFilename>nadoum2019.pdf</originalFilename><uploaded>2019-08-30T11:36:25.6600000</uploaded><type>Output</type><contentLength>15604314</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-09-04T00:00:00.0000000</embargoDate><documentNotes>© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/</documentNotes><copyrightCorrect>false</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2019-09-10T13:12:23.9448961 v2 51634 2019-08-30 On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels 3445603fcc2ff9d27b476a73b223a507 0000-0002-8380-771X Soran Birosca Soran Birosca true false 2019-08-30 EEN The deviation angle of the easy magnetisation <001>-axes from the rolling direction (RD) strongly affects the magnetic domain configuration within individual grains and hence the overall magnetic properties in grain oriented electrical steels (GOES). In the current study, both angles of deviations; α: the angle between <001> and in-plane rolling direction, and β: the angle between <001> and out-plane rolling direction, where calculated using electron backscatter diffraction (EBSD) raw data to investigate the exact correlation between the crystal orientation and magnetic domain structure. Further, EBSD combined with forescatter detector (FSD) is used to reveal the magnetic domain configuration within individual oriented grains. The microstructure and microtexture of various GOESs with different chemical compositions and magnetic properties were characterised. The magnetic domain patterns were directly imaged and correlated to the crystal orientation and α and β deviation angles. It is demonstrated that the crystal orientation has a great impact on the magnetic domain patterns, width, and configurations. It was also shown that the grain boundary characteristics have a significant influence on the magnetic domain transfer between neighbouring grains. It was evident that low angle grain boundaries allowed domain transfer without a significant change in the domain pattern, whereas high angle grain boundaries perturbed the magnetic domain pattern, width, and configuration. Furthermore, it was demonstrated that the size of the deviated orientation grains from ideal (110) <001> GOSS orientation is a critical microtexture parameter for the optimisation of magnetic property. Finally, it is concluded that the magnetic domain patterns and α and β angle of deviations are strongly correlated to the magnetic losses in GOES. Journal Article Journal of Magnetism and Magnetic Materials 165772 0304-8853 EBSD, Forescatter Imaging, GO Electrical Steels, Magnetic Domain 31 12 2019 2019-12-31 10.1016/j.jmmm.2019.165772 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2019-09-10T13:12:23.9448961 2019-08-30T11:34:50.6067111 Faculty of Science and Engineering School of Engineering and Applied Sciences - Uncategorised A. Nadoum 1 F. Robinson 2 S. Birosca 3 Soran Birosca 0000-0002-8380-771X 4 0051634-30082019113625.pdf nadoum2019.pdf 2019-08-30T11:36:25.6600000 Output 15604314 application/pdf Accepted Manuscript true 2020-09-04T00:00:00.0000000 © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ false eng |
title |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
spellingShingle |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels Soran Birosca |
title_short |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
title_full |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
title_fullStr |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
title_full_unstemmed |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
title_sort |
On the Correlation between Magnetic Domain and Crystallographic Grain Orientation in Grain Oriented Electrical Steels |
author_id_str_mv |
3445603fcc2ff9d27b476a73b223a507 |
author_id_fullname_str_mv |
3445603fcc2ff9d27b476a73b223a507_***_Soran Birosca |
author |
Soran Birosca |
author2 |
A. Nadoum F. Robinson S. Birosca Soran Birosca |
format |
Journal article |
container_title |
Journal of Magnetism and Magnetic Materials |
container_start_page |
165772 |
publishDate |
2019 |
institution |
Swansea University |
issn |
0304-8853 |
doi_str_mv |
10.1016/j.jmmm.2019.165772 |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Engineering and Applied Sciences - Uncategorised{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Engineering and Applied Sciences - Uncategorised |
document_store_str |
1 |
active_str |
0 |
description |
The deviation angle of the easy magnetisation <001>-axes from the rolling direction (RD) strongly affects the magnetic domain configuration within individual grains and hence the overall magnetic properties in grain oriented electrical steels (GOES). In the current study, both angles of deviations; α: the angle between <001> and in-plane rolling direction, and β: the angle between <001> and out-plane rolling direction, where calculated using electron backscatter diffraction (EBSD) raw data to investigate the exact correlation between the crystal orientation and magnetic domain structure. Further, EBSD combined with forescatter detector (FSD) is used to reveal the magnetic domain configuration within individual oriented grains. The microstructure and microtexture of various GOESs with different chemical compositions and magnetic properties were characterised. The magnetic domain patterns were directly imaged and correlated to the crystal orientation and α and β deviation angles. It is demonstrated that the crystal orientation has a great impact on the magnetic domain patterns, width, and configurations. It was also shown that the grain boundary characteristics have a significant influence on the magnetic domain transfer between neighbouring grains. It was evident that low angle grain boundaries allowed domain transfer without a significant change in the domain pattern, whereas high angle grain boundaries perturbed the magnetic domain pattern, width, and configuration. Furthermore, it was demonstrated that the size of the deviated orientation grains from ideal (110) <001> GOSS orientation is a critical microtexture parameter for the optimisation of magnetic property. Finally, it is concluded that the magnetic domain patterns and α and β angle of deviations are strongly correlated to the magnetic losses in GOES. |
published_date |
2019-12-31T04:03:36Z |
_version_ |
1763753293542064128 |
score |
11.035765 |