No Cover Image

Journal article 329 views 16 downloads

Development of an axisymmetric parallel solution algorithm for membrane separation process / S.B. Lo, J.W. Jones, O. Hassan, N. Hilal, Oubay Hassan, Jason Jones, Nidal Hilal

Desalination, Volume: 471, Start page: 114127

Swansea University Authors: Oubay Hassan, Jason Jones, Nidal Hilal

Abstract

A novel parallel technique that couples the lattice–Boltzmann method and a finite volume scheme for the prediction of concentration polarisation and pore blocking in axisymmetric cross–flow membrane separation process is presented. The model uses the Lattice–Boltzmann method to solve the incompressi...

Full description

Published in: Desalination
ISSN: 0011-9164
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa51637
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-08-31T14:46:07Z
last_indexed 2019-10-15T03:07:44Z
id cronfa51637
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2019-10-14T09:36:08.7225138</datestamp><bib-version>v2</bib-version><id>51637</id><entry>2019-08-31</entry><title>Development of an axisymmetric parallel solution algorithm for membrane separation process</title><swanseaauthors><author><sid>07479d73eba3773d8904cbfbacc57c5b</sid><ORCID>0000-0001-7472-3218</ORCID><firstname>Oubay</firstname><surname>Hassan</surname><name>Oubay Hassan</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>aa4865d48c53a0df1c1547171826eab9</sid><ORCID>0000-0002-7715-1857</ORCID><firstname>Jason</firstname><surname>Jones</surname><name>Jason Jones</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>3acba771241d878c8e35ff464aec0342</sid><firstname>Nidal</firstname><surname>Hilal</surname><name>Nidal Hilal</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-08-31</date><deptcode>CIVL</deptcode><abstract>A novel parallel technique that couples the lattice&#x2013;Boltzmann method and a finite volume scheme for the prediction of concentration polarisation and pore blocking in axisymmetric cross&#x2013;flow membrane separation process is presented. The model uses the Lattice&#x2013;Boltzmann method to solve the incompressible Navier&#x2013;Stokes equations for hydrodynamics and the finite volume method to solve the convection&#x2013;diffusion equation for solute particles.Concentration polarisation is modelled for micro&#x2013;particles by having the diffusion coefficient defined as a function of particle concentration and shear rate. The model considers the effect of an incompressible cake formation. Pore blocking phenomenon is predicted for filtration membrane fouling by using the rate of particles arriving at the membrane surface.The simulation code is parallelised in two ways. Compute Unified Device Archi- tecture(CUDA) is used for a cluster of graphical processing units(GPUs) and Message Passing Interface(MPI) is utilised for a cluster of central processing units(CPUs), with various parallelisation techniques to optimise memory usage for higher performance. The proposed model is validated by comparing to analytical solutions and experimental result.</abstract><type>Journal Article</type><journal>Desalination</journal><volume>471</volume><paginationStart>114127</paginationStart><publisher/><issnPrint>0011-9164</issnPrint><keywords>Filtration, Concentration Polarisation, Cake Formation, Pore Blocking, Parallel Programming</keywords><publishedDay>15</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-15</publishedDate><doi>10.1016/j.desal.2019.114127</doi><url/><notes/><college>COLLEGE NANME</college><department>Civil Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CIVL</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2019-10-14T09:36:08.7225138</lastEdited><Created>2019-08-31T05:32:40.9961403</Created><path><level id="1">College of Engineering</level><level id="2">Engineering</level></path><authors><author><firstname>S.B.</firstname><surname>Lo</surname><order>1</order></author><author><firstname>J.W.</firstname><surname>Jones</surname><order>2</order></author><author><firstname>O.</firstname><surname>Hassan</surname><order>3</order></author><author><firstname>N.</firstname><surname>Hilal</surname><order>4</order></author><author><firstname>Oubay</firstname><surname>Hassan</surname><orcid>0000-0001-7472-3218</orcid><order>5</order></author><author><firstname>Jason</firstname><surname>Jones</surname><orcid>0000-0002-7715-1857</orcid><order>6</order></author><author><firstname>Nidal</firstname><surname>Hilal</surname><order>7</order></author></authors><documents><document><filename>0051637-14102019093554.pdf</filename><originalFilename>lo2019v2.pdf</originalFilename><uploaded>2019-10-14T09:35:54.0300000</uploaded><type>Output</type><contentLength>940015</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2020-09-20T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2019-10-14T09:36:08.7225138 v2 51637 2019-08-31 Development of an axisymmetric parallel solution algorithm for membrane separation process 07479d73eba3773d8904cbfbacc57c5b 0000-0001-7472-3218 Oubay Hassan Oubay Hassan true false aa4865d48c53a0df1c1547171826eab9 0000-0002-7715-1857 Jason Jones Jason Jones true false 3acba771241d878c8e35ff464aec0342 Nidal Hilal Nidal Hilal true false 2019-08-31 CIVL A novel parallel technique that couples the lattice–Boltzmann method and a finite volume scheme for the prediction of concentration polarisation and pore blocking in axisymmetric cross–flow membrane separation process is presented. The model uses the Lattice–Boltzmann method to solve the incompressible Navier–Stokes equations for hydrodynamics and the finite volume method to solve the convection–diffusion equation for solute particles.Concentration polarisation is modelled for micro–particles by having the diffusion coefficient defined as a function of particle concentration and shear rate. The model considers the effect of an incompressible cake formation. Pore blocking phenomenon is predicted for filtration membrane fouling by using the rate of particles arriving at the membrane surface.The simulation code is parallelised in two ways. Compute Unified Device Archi- tecture(CUDA) is used for a cluster of graphical processing units(GPUs) and Message Passing Interface(MPI) is utilised for a cluster of central processing units(CPUs), with various parallelisation techniques to optimise memory usage for higher performance. The proposed model is validated by comparing to analytical solutions and experimental result. Journal Article Desalination 471 114127 0011-9164 Filtration, Concentration Polarisation, Cake Formation, Pore Blocking, Parallel Programming 15 11 2019 2019-11-15 10.1016/j.desal.2019.114127 COLLEGE NANME Civil Engineering COLLEGE CODE CIVL Swansea University 2019-10-14T09:36:08.7225138 2019-08-31T05:32:40.9961403 College of Engineering Engineering S.B. Lo 1 J.W. Jones 2 O. Hassan 3 N. Hilal 4 Oubay Hassan 0000-0001-7472-3218 5 Jason Jones 0000-0002-7715-1857 6 Nidal Hilal 7 0051637-14102019093554.pdf lo2019v2.pdf 2019-10-14T09:35:54.0300000 Output 940015 application/pdf Accepted Manuscript true 2020-09-20T00:00:00.0000000 true eng
title Development of an axisymmetric parallel solution algorithm for membrane separation process
spellingShingle Development of an axisymmetric parallel solution algorithm for membrane separation process
Oubay, Hassan
Jason, Jones
Nidal, Hilal
title_short Development of an axisymmetric parallel solution algorithm for membrane separation process
title_full Development of an axisymmetric parallel solution algorithm for membrane separation process
title_fullStr Development of an axisymmetric parallel solution algorithm for membrane separation process
title_full_unstemmed Development of an axisymmetric parallel solution algorithm for membrane separation process
title_sort Development of an axisymmetric parallel solution algorithm for membrane separation process
author_id_str_mv 07479d73eba3773d8904cbfbacc57c5b
aa4865d48c53a0df1c1547171826eab9
3acba771241d878c8e35ff464aec0342
author_id_fullname_str_mv 07479d73eba3773d8904cbfbacc57c5b_***_Oubay, Hassan
aa4865d48c53a0df1c1547171826eab9_***_Jason, Jones
3acba771241d878c8e35ff464aec0342_***_Nidal, Hilal
author Oubay, Hassan
Jason, Jones
Nidal, Hilal
author2 S.B. Lo
J.W. Jones
O. Hassan
N. Hilal
Oubay Hassan
Jason Jones
Nidal Hilal
format Journal article
container_title Desalination
container_volume 471
container_start_page 114127
publishDate 2019
institution Swansea University
issn 0011-9164
doi_str_mv 10.1016/j.desal.2019.114127
college_str College of Engineering
hierarchytype
hierarchy_top_id collegeofengineering
hierarchy_top_title College of Engineering
hierarchy_parent_id collegeofengineering
hierarchy_parent_title College of Engineering
department_str Engineering{{{_:::_}}}College of Engineering{{{_:::_}}}Engineering
document_store_str 1
active_str 0
description A novel parallel technique that couples the lattice–Boltzmann method and a finite volume scheme for the prediction of concentration polarisation and pore blocking in axisymmetric cross–flow membrane separation process is presented. The model uses the Lattice–Boltzmann method to solve the incompressible Navier–Stokes equations for hydrodynamics and the finite volume method to solve the convection–diffusion equation for solute particles.Concentration polarisation is modelled for micro–particles by having the diffusion coefficient defined as a function of particle concentration and shear rate. The model considers the effect of an incompressible cake formation. Pore blocking phenomenon is predicted for filtration membrane fouling by using the rate of particles arriving at the membrane surface.The simulation code is parallelised in two ways. Compute Unified Device Archi- tecture(CUDA) is used for a cluster of graphical processing units(GPUs) and Message Passing Interface(MPI) is utilised for a cluster of central processing units(CPUs), with various parallelisation techniques to optimise memory usage for higher performance. The proposed model is validated by comparing to analytical solutions and experimental result.
published_date 2019-11-15T04:11:39Z
_version_ 1711841737924673536
score 10.823442