No Cover Image

Journal article 46 views

Modeling strategy for dynamic-modal mechanophore in double-network hydrogel composites with self-growing and tailorable mechanical strength / Mokarram, Hossain

Composites Part B: Engineering, Start page: 107528

Swansea University Author: Mokarram, Hossain

  • Accepted Manuscript under embargo until: 10th October 2020

Abstract

Smart materials with self-growing and tailorable mechanical strength have wide-range potential applications in self-healing, self-repairing, self-assembly, artificial muscle, soft robots and intelligent devices. However, their working mechanisms and principles are not fully understood yet and mathem...

Full description

Published in: Composites Part B: Engineering
ISSN: 1359-8368
Published: 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52415
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract: Smart materials with self-growing and tailorable mechanical strength have wide-range potential applications in self-healing, self-repairing, self-assembly, artificial muscle, soft robots and intelligent devices. However, their working mechanisms and principles are not fully understood yet and mathematically and physical modeling is a huge challenge, as traditionally synthesized materials cannot self-grow and reconstruct themselves once formed or deformed. In this study, a phenomenological constitutive model was developed to investigate the working mechanisms of self-growing and tailorable mechanical strength in double-network (DN) hydrogel composites, induced by mechanochemical transduction of dynamic-modal mechanophore. An extended Maxwell model was firstly employed to characterize the mechanical unzipping of hydrogel composites, and then mechanochemically induced destruction and reconstruction processes of brittle network in the hydrogel composite were formulated. The enhanced mechanical strength of brittle network has been identified as the key driving force to generate self-growing and tailorable mechanical strength in the hydrogel composite. Finally, a stress-strain constitutive relationship was developed for the dynamic-modal mechanophorein the hydrogel composite. Simulation results obtained from the proposed model were compared with the experimental data, and a good agreement has been achieved. This study provides an effective strategy for modelling and exploring the working mechanism in the mechanoresponsive DN hydrogel composites with self-growing and tailorable mechanical strength.
Keywords: Mechanochemical; Modelling; Hydrogel composite; Self-growing
Start Page: 107528