No Cover Image

Journal article 997 views 236 downloads

Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish

Ines Fuertbauer Orcid Logo, Rowan Brown Orcid Logo, Michael Heistermann

Hormones and Behavior, Volume: 119, Start page: 104636

Swansea University Authors: Ines Fuertbauer Orcid Logo, Rowan Brown Orcid Logo

Abstract

Androgens, traditionally viewed as hormones that regulate secondary sexual characteristics and reproduction in male vertebrates, are often modulated by social stimuli. High levels of the ‘social hormone’ testosterone (T) are linked to aggression, dominance, and competition. Low T levels, in contrast...

Full description

Published in: Hormones and Behavior
ISSN: 0018-506X
Published: Elsevier BV 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52635
first_indexed 2019-11-04T13:13:09Z
last_indexed 2023-03-14T04:06:37Z
id cronfa52635
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2023-03-13T09:50:06.9672884</datestamp><bib-version>v2</bib-version><id>52635</id><entry>2019-11-04</entry><title>Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish</title><swanseaauthors><author><sid>f682ec95fa97c4fabb57dc098a9fdaaa</sid><ORCID>0000-0003-1404-6280</ORCID><firstname>Ines</firstname><surname>Fuertbauer</surname><name>Ines Fuertbauer</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>d7db8d42c476dfa69c15ce06d29bd863</sid><ORCID>0000-0003-3628-2524</ORCID><firstname>Rowan</firstname><surname>Brown</surname><name>Rowan Brown</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-04</date><deptcode>BGPS</deptcode><abstract>Androgens, traditionally viewed as hormones that regulate secondary sexual characteristics and reproduction in male vertebrates, are often modulated by social stimuli. High levels of the &#x2018;social hormone&#x2019; testosterone (T) are linked to aggression, dominance, and competition. Low T levels, in contrast, promote sociopositive behaviours such as affiliation, social tolerance, and cooperation, which can be crucial for group-level, collective behaviours. Here, we test the hypothesis that - in a collective context - low T levels should be favourable, using non-reproductive male and female stickleback fish (Gasterosteus aculeatus) and non-invasive waterborne hormone analysis. In line with our predictions, we show that the fishes' T levels were significantly lower during shoaling compared to when alone, with high-T individuals showing the largest decrease. Ruling out stress-induced T suppression and increased T conversion into oestradiol, we find evidence that shoaling directly affects androgen responsiveness. We also show that groups characterized by lower mean T exhibit less hierarchical leader-follower dynamics, suggesting that low T promotes egalitarianism. Overall, we show that collective action results in lower T levels, which may serve to promote coordination and group performance. Our study, together with recent complementary findings in humans, emphasizes the importance of low T for the expression of sociopositive behaviour across vertebrates, suggesting similarities in endocrine mechanisms.</abstract><type>Journal Article</type><journal>Hormones and Behavior</journal><volume>119</volume><journalNumber/><paginationStart>104636</paginationStart><paginationEnd/><publisher>Elsevier BV</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0018-506X</issnPrint><issnElectronic/><keywords>Collective hormone profiles, Social context, Social modulation, Social tolerance, Testosterone</keywords><publishedDay>1</publishedDay><publishedMonth>3</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-03-01</publishedDate><doi>10.1016/j.yhbeh.2019.104636</doi><url>http://dx.doi.org/10.1016/j.yhbeh.2019.104636</url><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-03-13T09:50:06.9672884</lastEdited><Created>2019-11-04T08:02:53.6682387</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Biosciences</level></path><authors><author><firstname>Ines</firstname><surname>Fuertbauer</surname><orcid>0000-0003-1404-6280</orcid><order>1</order></author><author><firstname>Rowan</firstname><surname>Brown</surname><orcid>0000-0003-3628-2524</orcid><order>2</order></author><author><firstname>Michael</firstname><surname>Heistermann</surname><order>3</order></author></authors><documents><document><filename>52635__15781__2717f04ea9674cdbaed5be68ec51e79a.pdf</filename><originalFilename>F&#xFC;rtbauer et al., HB accepted manuscript.pdf</originalFilename><uploaded>2019-11-04T08:08:14.5135955</uploaded><type>Output</type><contentLength>885305</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2020-12-11T00:00:00.0000000</embargoDate><copyrightCorrect>false</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2023-03-13T09:50:06.9672884 v2 52635 2019-11-04 Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish f682ec95fa97c4fabb57dc098a9fdaaa 0000-0003-1404-6280 Ines Fuertbauer Ines Fuertbauer true false d7db8d42c476dfa69c15ce06d29bd863 0000-0003-3628-2524 Rowan Brown Rowan Brown true false 2019-11-04 BGPS Androgens, traditionally viewed as hormones that regulate secondary sexual characteristics and reproduction in male vertebrates, are often modulated by social stimuli. High levels of the ‘social hormone’ testosterone (T) are linked to aggression, dominance, and competition. Low T levels, in contrast, promote sociopositive behaviours such as affiliation, social tolerance, and cooperation, which can be crucial for group-level, collective behaviours. Here, we test the hypothesis that - in a collective context - low T levels should be favourable, using non-reproductive male and female stickleback fish (Gasterosteus aculeatus) and non-invasive waterborne hormone analysis. In line with our predictions, we show that the fishes' T levels were significantly lower during shoaling compared to when alone, with high-T individuals showing the largest decrease. Ruling out stress-induced T suppression and increased T conversion into oestradiol, we find evidence that shoaling directly affects androgen responsiveness. We also show that groups characterized by lower mean T exhibit less hierarchical leader-follower dynamics, suggesting that low T promotes egalitarianism. Overall, we show that collective action results in lower T levels, which may serve to promote coordination and group performance. Our study, together with recent complementary findings in humans, emphasizes the importance of low T for the expression of sociopositive behaviour across vertebrates, suggesting similarities in endocrine mechanisms. Journal Article Hormones and Behavior 119 104636 Elsevier BV 0018-506X Collective hormone profiles, Social context, Social modulation, Social tolerance, Testosterone 1 3 2020 2020-03-01 10.1016/j.yhbeh.2019.104636 http://dx.doi.org/10.1016/j.yhbeh.2019.104636 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University 2023-03-13T09:50:06.9672884 2019-11-04T08:02:53.6682387 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Biosciences Ines Fuertbauer 0000-0003-1404-6280 1 Rowan Brown 0000-0003-3628-2524 2 Michael Heistermann 3 52635__15781__2717f04ea9674cdbaed5be68ec51e79a.pdf Fürtbauer et al., HB accepted manuscript.pdf 2019-11-04T08:08:14.5135955 Output 885305 application/pdf Accepted Manuscript true 2020-12-11T00:00:00.0000000 false
title Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
spellingShingle Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
Ines Fuertbauer
Rowan Brown
title_short Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
title_full Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
title_fullStr Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
title_full_unstemmed Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
title_sort Collective action reduces androgen responsiveness with implications for shoaling dynamics in stickleback fish
author_id_str_mv f682ec95fa97c4fabb57dc098a9fdaaa
d7db8d42c476dfa69c15ce06d29bd863
author_id_fullname_str_mv f682ec95fa97c4fabb57dc098a9fdaaa_***_Ines Fuertbauer
d7db8d42c476dfa69c15ce06d29bd863_***_Rowan Brown
author Ines Fuertbauer
Rowan Brown
author2 Ines Fuertbauer
Rowan Brown
Michael Heistermann
format Journal article
container_title Hormones and Behavior
container_volume 119
container_start_page 104636
publishDate 2020
institution Swansea University
issn 0018-506X
doi_str_mv 10.1016/j.yhbeh.2019.104636
publisher Elsevier BV
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Biosciences{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Biosciences
url http://dx.doi.org/10.1016/j.yhbeh.2019.104636
document_store_str 1
active_str 0
description Androgens, traditionally viewed as hormones that regulate secondary sexual characteristics and reproduction in male vertebrates, are often modulated by social stimuli. High levels of the ‘social hormone’ testosterone (T) are linked to aggression, dominance, and competition. Low T levels, in contrast, promote sociopositive behaviours such as affiliation, social tolerance, and cooperation, which can be crucial for group-level, collective behaviours. Here, we test the hypothesis that - in a collective context - low T levels should be favourable, using non-reproductive male and female stickleback fish (Gasterosteus aculeatus) and non-invasive waterborne hormone analysis. In line with our predictions, we show that the fishes' T levels were significantly lower during shoaling compared to when alone, with high-T individuals showing the largest decrease. Ruling out stress-induced T suppression and increased T conversion into oestradiol, we find evidence that shoaling directly affects androgen responsiveness. We also show that groups characterized by lower mean T exhibit less hierarchical leader-follower dynamics, suggesting that low T promotes egalitarianism. Overall, we show that collective action results in lower T levels, which may serve to promote coordination and group performance. Our study, together with recent complementary findings in humans, emphasizes the importance of low T for the expression of sociopositive behaviour across vertebrates, suggesting similarities in endocrine mechanisms.
published_date 2020-03-01T19:57:21Z
_version_ 1821980325261082624
score 11.048042