Technical Report 516 views
Variational Bayesian inference of hidden stochastic processes with unknown parameters
Swansea University Authors: Pavel Loskot , Komlan Atitey
Abstract
Estimating hidden processes from non-linear noisy observations is particularly difficult when the parameters of these processes are not known. This paper adopts a machine learning approach to devise variational Bayesian inference for such scenarios. In particular, a random process generated by the a...
Published: |
|
---|---|
Online Access: |
https://arxiv.org/abs/1911.00757 |
URI: | https://cronfa.swan.ac.uk/Record/cronfa52652 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
first_indexed |
2019-11-05T19:13:45Z |
---|---|
last_indexed |
2023-04-18T03:05:53Z |
id |
cronfa52652 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2023-04-17T10:52:22.2957978</datestamp><bib-version>v2</bib-version><id>52652</id><entry>2019-11-05</entry><title>Variational Bayesian inference of hidden stochastic processes with unknown parameters</title><swanseaauthors><author><sid>bc7cba9ef306864239b9348c3aea4c3e</sid><ORCID>0000-0002-2773-2186</ORCID><firstname>Pavel</firstname><surname>Loskot</surname><name>Pavel Loskot</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>556d8b85e41c10e686245848e3f080b6</sid><firstname>Komlan</firstname><surname>Atitey</surname><name>Komlan Atitey</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-05</date><deptcode>EEN</deptcode><abstract>Estimating hidden processes from non-linear noisy observations is particularly difficult when the parameters of these processes are not known. This paper adopts a machine learning approach to devise variational Bayesian inference for such scenarios. In particular, a random process generated by the autoregressive moving average (ARMA) linear model is inferred from non-linearity noise observations. The posterior distribution of hidden states are approximated by a set of weighted particles generated by the sequential Monte carlo (SMC) algorithm involving sampling with importance sampling resampling (SISR). Numerical efficiency and estimation accuracy of the proposed inference method are evaluated by computer simulations. Furthermore, the proposed inference method is demonstrated on a practical problem of estimating the missing values in the gene expression time series assuming vector autoregressive (VAR) data model.</abstract><type>Technical Report</type><journal/><volume/><journalNumber/><paginationStart/><paginationEnd/><publisher/><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint/><issnElectronic/><keywords/><publishedDay>0</publishedDay><publishedMonth>0</publishedMonth><publishedYear>0</publishedYear><publishedDate>0001-01-01</publishedDate><doi/><url>https://arxiv.org/abs/1911.00757</url><notes/><college>COLLEGE NANME</college><department>Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>EEN</DepartmentCode><institution>Swansea University</institution><apcterm/><funders/><projectreference/><lastEdited>2023-04-17T10:52:22.2957978</lastEdited><Created>2019-11-05T15:44:50.8154200</Created><path><level id="1"/><level id="2"/></path><authors><author><firstname>Pavel</firstname><surname>Loskot</surname><orcid>0000-0002-2773-2186</orcid><order>1</order></author><author><firstname>Komlan</firstname><surname>Atitey</surname><order>2</order></author></authors><documents/><OutputDurs/></rfc1807> |
spelling |
2023-04-17T10:52:22.2957978 v2 52652 2019-11-05 Variational Bayesian inference of hidden stochastic processes with unknown parameters bc7cba9ef306864239b9348c3aea4c3e 0000-0002-2773-2186 Pavel Loskot Pavel Loskot true false 556d8b85e41c10e686245848e3f080b6 Komlan Atitey Komlan Atitey true false 2019-11-05 EEN Estimating hidden processes from non-linear noisy observations is particularly difficult when the parameters of these processes are not known. This paper adopts a machine learning approach to devise variational Bayesian inference for such scenarios. In particular, a random process generated by the autoregressive moving average (ARMA) linear model is inferred from non-linearity noise observations. The posterior distribution of hidden states are approximated by a set of weighted particles generated by the sequential Monte carlo (SMC) algorithm involving sampling with importance sampling resampling (SISR). Numerical efficiency and estimation accuracy of the proposed inference method are evaluated by computer simulations. Furthermore, the proposed inference method is demonstrated on a practical problem of estimating the missing values in the gene expression time series assuming vector autoregressive (VAR) data model. Technical Report 0 0 0 0001-01-01 https://arxiv.org/abs/1911.00757 COLLEGE NANME Engineering COLLEGE CODE EEN Swansea University 2023-04-17T10:52:22.2957978 2019-11-05T15:44:50.8154200 Pavel Loskot 0000-0002-2773-2186 1 Komlan Atitey 2 |
title |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
spellingShingle |
Variational Bayesian inference of hidden stochastic processes with unknown parameters Pavel Loskot Komlan Atitey |
title_short |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
title_full |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
title_fullStr |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
title_full_unstemmed |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
title_sort |
Variational Bayesian inference of hidden stochastic processes with unknown parameters |
author_id_str_mv |
bc7cba9ef306864239b9348c3aea4c3e 556d8b85e41c10e686245848e3f080b6 |
author_id_fullname_str_mv |
bc7cba9ef306864239b9348c3aea4c3e_***_Pavel Loskot 556d8b85e41c10e686245848e3f080b6_***_Komlan Atitey |
author |
Pavel Loskot Komlan Atitey |
author2 |
Pavel Loskot Komlan Atitey |
format |
Technical Report |
institution |
Swansea University |
url |
https://arxiv.org/abs/1911.00757 |
document_store_str |
0 |
active_str |
0 |
description |
Estimating hidden processes from non-linear noisy observations is particularly difficult when the parameters of these processes are not known. This paper adopts a machine learning approach to devise variational Bayesian inference for such scenarios. In particular, a random process generated by the autoregressive moving average (ARMA) linear model is inferred from non-linearity noise observations. The posterior distribution of hidden states are approximated by a set of weighted particles generated by the sequential Monte carlo (SMC) algorithm involving sampling with importance sampling resampling (SISR). Numerical efficiency and estimation accuracy of the proposed inference method are evaluated by computer simulations. Furthermore, the proposed inference method is demonstrated on a practical problem of estimating the missing values in the gene expression time series assuming vector autoregressive (VAR) data model. |
published_date |
0001-01-01T04:05:08Z |
_version_ |
1763753390197702656 |
score |
11.035874 |