No Cover Image

Journal article 239 views 61 downloads

Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity / A. Jalalian-Khakshour, Christopher Phillips, L. Jackson, Tom Dunlop, Serena Margadonna, Davide Deganello

Journal of Materials Science, Volume: 55, Pages: 2291 - 2302

Swansea University Authors: Christopher Phillips, Tom Dunlop, Serena Margadonna, Davide Deganello

  • Jalalian-Khakshour2019.pdf

    PDF | Version of Record

    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License

    Download (2.07MB)

Abstract

In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (...

Full description

Published in: Journal of Materials Science
ISSN: 0022-2461 1573-4803
Published: Springer Science and Business Media LLC 2019
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52708
Tags: Add Tag
No Tags, Be the first to tag this record!
first_indexed 2019-11-12T13:17:29Z
last_indexed 2021-09-21T03:13:14Z
id cronfa52708
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2021-09-20T10:34:03.4521447</datestamp><bib-version>v2</bib-version><id>52708</id><entry>2019-11-12</entry><title>Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity</title><swanseaauthors><author><sid>cc734f776f10b3fb9b43816c9f617bb5</sid><ORCID>0000-0001-8011-710X</ORCID><firstname>Christopher</firstname><surname>Phillips</surname><name>Christopher Phillips</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>809395460ab1e6b53a906b136d919c41</sid><ORCID>0000-0002-5851-8713</ORCID><firstname>Tom</firstname><surname>Dunlop</surname><name>Tom Dunlop</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>e31904a10b1b1240b98ab52d9977dfbe</sid><ORCID>0000-0002-6996-6562</ORCID><firstname>Serena</firstname><surname>Margadonna</surname><name>Serena Margadonna</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>ea38a0040bdfd3875506189e3629b32a</sid><ORCID>0000-0001-8341-4177</ORCID><firstname>Davide</firstname><surname>Deganello</surname><name>Davide Deganello</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-12</date><deptcode>CHEG</deptcode><abstract>In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 &#xB0;C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16&#x2009;&#xD7;&#x2009;10&#x2212;3 S cm&#x2212;1 when sintered at 1230 &#xB0;C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62&#x2009;&#xD7;&#x2009;10&#x2212;3 S cm&#x2212;1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.</abstract><type>Journal Article</type><journal>Journal of Materials Science</journal><volume>55</volume><journalNumber/><paginationStart>2291</paginationStart><paginationEnd>2302</paginationEnd><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0022-2461</issnPrint><issnElectronic>1573-4803</issnElectronic><keywords/><publishedDay>11</publishedDay><publishedMonth>11</publishedMonth><publishedYear>2019</publishedYear><publishedDate>2019-11-11</publishedDate><doi>10.1007/s10853-019-04162-8</doi><url/><notes/><college>COLLEGE NANME</college><department>Chemical Engineering</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>CHEG</DepartmentCode><institution>Swansea University</institution><apcterm/><lastEdited>2021-09-20T10:34:03.4521447</lastEdited><Created>2019-11-12T09:48:12.5843885</Created><path><level id="1"/><level id="2"/></path><authors><author><firstname>A.</firstname><surname>Jalalian-Khakshour</surname><order>1</order></author><author><firstname>Christopher</firstname><surname>Phillips</surname><orcid>0000-0001-8011-710X</orcid><order>2</order></author><author><firstname>L.</firstname><surname>Jackson</surname><order>3</order></author><author><firstname>Tom</firstname><surname>Dunlop</surname><orcid>0000-0002-5851-8713</orcid><order>4</order></author><author><firstname>Serena</firstname><surname>Margadonna</surname><orcid>0000-0002-6996-6562</orcid><order>5</order></author><author><firstname>Davide</firstname><surname>Deganello</surname><orcid>0000-0001-8341-4177</orcid><order>6</order></author></authors><documents><document><filename>52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf</filename><originalFilename>Jalalian-Khakshour2019.pdf</originalFilename><uploaded>2019-11-12T09:53:30.3217556</uploaded><type>Output</type><contentLength>2170943</contentLength><contentType>application/pdf</contentType><version>Version of Record</version><cronfaStatus>true</cronfaStatus><action/><embargoDate>2019-11-12T00:00:00.0000000</embargoDate><documentNotes>This article is distributed under the terms of the Creative Commons Attribution 4.0 International License</documentNotes><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2021-09-20T10:34:03.4521447 v2 52708 2019-11-12 Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity cc734f776f10b3fb9b43816c9f617bb5 0000-0001-8011-710X Christopher Phillips Christopher Phillips true false 809395460ab1e6b53a906b136d919c41 0000-0002-5851-8713 Tom Dunlop Tom Dunlop true false e31904a10b1b1240b98ab52d9977dfbe 0000-0002-6996-6562 Serena Margadonna Serena Margadonna true false ea38a0040bdfd3875506189e3629b32a 0000-0001-8341-4177 Davide Deganello Davide Deganello true false 2019-11-12 CHEG In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process. Journal Article Journal of Materials Science 55 2291 2302 Springer Science and Business Media LLC 0022-2461 1573-4803 11 11 2019 2019-11-11 10.1007/s10853-019-04162-8 COLLEGE NANME Chemical Engineering COLLEGE CODE CHEG Swansea University 2021-09-20T10:34:03.4521447 2019-11-12T09:48:12.5843885 A. Jalalian-Khakshour 1 Christopher Phillips 0000-0001-8011-710X 2 L. Jackson 3 Tom Dunlop 0000-0002-5851-8713 4 Serena Margadonna 0000-0002-6996-6562 5 Davide Deganello 0000-0001-8341-4177 6 52708__15861__d1fd1f30d7314fec92f894c568727f9c.pdf Jalalian-Khakshour2019.pdf 2019-11-12T09:53:30.3217556 Output 2170943 application/pdf Version of Record true 2019-11-12T00:00:00.0000000 This article is distributed under the terms of the Creative Commons Attribution 4.0 International License true eng
title Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
spellingShingle Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
Christopher, Phillips
Tom, Dunlop
Serena, Margadonna
Davide, Deganello
title_short Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_full Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_fullStr Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_full_unstemmed Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
title_sort Solid-state synthesis of NASICON (Na3Zr2Si2PO12) using nanoparticle precursors for optimisation of ionic conductivity
author_id_str_mv cc734f776f10b3fb9b43816c9f617bb5
809395460ab1e6b53a906b136d919c41
e31904a10b1b1240b98ab52d9977dfbe
ea38a0040bdfd3875506189e3629b32a
author_id_fullname_str_mv cc734f776f10b3fb9b43816c9f617bb5_***_Christopher, Phillips
809395460ab1e6b53a906b136d919c41_***_Tom, Dunlop
e31904a10b1b1240b98ab52d9977dfbe_***_Serena, Margadonna
ea38a0040bdfd3875506189e3629b32a_***_Davide, Deganello
author Christopher, Phillips
Tom, Dunlop
Serena, Margadonna
Davide, Deganello
author2 A. Jalalian-Khakshour
Christopher Phillips
L. Jackson
Tom Dunlop
Serena Margadonna
Davide Deganello
format Journal article
container_title Journal of Materials Science
container_volume 55
container_start_page 2291
publishDate 2019
institution Swansea University
issn 0022-2461
1573-4803
doi_str_mv 10.1007/s10853-019-04162-8
publisher Springer Science and Business Media LLC
document_store_str 1
active_str 0
description In this work, the effect of varying the size of the precursor raw materials SiO2 and ZrO2 in the solid-state synthesis of NASICON in the form Na3Zr2Si2PO12 was studied. Nanoscale and macro-scale precursor materials were selected for comparison purposes, and a range of sintering times were examined (10, 24 and 40 h) at a temperature of 1230 °C. Na3Zr2Si2PO12 pellets produced from nanopowder precursors were found to produce substantially higher ionic conductivities, with improved morphology and higher density than those produced from larger micron-scaled precursors. The nanoparticle precursors were shown to give a maximum ionic conductivity of 1.16 × 10−3 S cm−1 when sintered at 1230 °C for 40 h, in the higher range of published solid-state Na3Zr2Si2PO12 conductivities. The macro-precursors gave lower ionic conductivity of 0.62 × 10−3 S cm−1 under the same processing conditions. Most current authors do not quote or consider the precursor particle size for solid-state synthesis of Na3Zr2Si2PO12. This study shows the importance of precursor powder particle size in the microstructure and performance of Na3Zr2Si2PO12 during solid-state synthesis and offers a route to improved predictability and consistency of the manufacturing process.
published_date 2019-11-11T04:16:21Z
_version_ 1714559943061798912
score 10.831132