Journal article 991 views 244 downloads
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
Solar RRL, Volume: 4, Issue: 2, Start page: 1900221
Swansea University Authors: Robin Kerremans, Oskar Sandberg , Simone Meroni , Trystan Watson , Ardalan Armin, Paul Meredith
-
PDF | Accepted Manuscript
28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf
Download (1.42MB)
DOI (Published version): 10.1002/solr.201900221
Abstract
Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon elect...
Published in: | Solar RRL |
---|---|
ISSN: | 2367-198X 2367-198X |
Published: |
Wiley
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52738 |
first_indexed |
2020-01-24T13:43:57Z |
---|---|
last_indexed |
2023-01-11T14:30:01Z |
id |
cronfa52738 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2022-12-05T12:02:04.5382816</datestamp><bib-version>v2</bib-version><id>52738</id><entry>2019-11-13</entry><title>On the Electro‐Optics of Carbon Stack Perovskite Solar Cells</title><swanseaauthors><author><sid>ceb23b4837db851ac099a7d2762b341c</sid><firstname>Robin</firstname><surname>Kerremans</surname><name>Robin Kerremans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9e91512a54d5aee66cd77851a96ba747</sid><ORCID>0000-0003-3778-8746</ORCID><firstname>Oskar</firstname><surname>Sandberg</surname><name>Oskar Sandberg</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>78a4cf80ab2fe6cca80716b5d357d8dd</sid><ORCID>0000-0002-6901-772X</ORCID><firstname>Simone</firstname><surname>Meroni</surname><name>Simone Meroni</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>31e8fe57fa180d418afd48c3af280c2e</sid><ORCID>0000-0002-9049-7414</ORCID><firstname>Paul</firstname><surname>Meredith</surname><name>Paul Meredith</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-13</date><deptcode>BGPS</deptcode><abstract>Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the >20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies >16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental‐simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective‐medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be ≈85%. Numerical drift‐diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity.</abstract><type>Journal Article</type><journal>Solar RRL</journal><volume>4</volume><journalNumber>2</journalNumber><paginationStart>1900221</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2367-198X</issnPrint><issnElectronic>2367-198X</issnElectronic><keywords>carbon stack perovskite solar cells; drift-diffusion; internal quantum efficiency; optical modeling</keywords><publishedDay>7</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-07</publishedDate><doi>10.1002/solr.201900221</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC. Grant Number: EP/M015254/1
Ser Cymru II, ERDF. Grant Number: Ser Cymru II
Ser Cymru II. Grant Number: Rising Star</funders><projectreference/><lastEdited>2022-12-05T12:02:04.5382816</lastEdited><Created>2019-11-13T16:47:33.9015292</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Robin</firstname><surname>Kerremans</surname><order>1</order></author><author><firstname>Oskar</firstname><surname>Sandberg</surname><orcid>0000-0003-3778-8746</orcid><order>2</order></author><author><firstname>Simone</firstname><surname>Meroni</surname><orcid>0000-0002-6901-772X</orcid><order>3</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>4</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><order>5</order></author><author><firstname>Paul</firstname><surname>Meredith</surname><orcid>0000-0002-9049-7414</orcid><order>6</order></author></authors><documents><document><filename>52738__16418__0f7ee576d73140af84b2544fd17901bf.pdf</filename><originalFilename>Manuscript Submitted SRRL.pdf</originalFilename><uploaded>2020-01-24T08:39:34.3792252</uploaded><type>Output</type><contentLength>1494179</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807> |
spelling |
2022-12-05T12:02:04.5382816 v2 52738 2019-11-13 On the Electro‐Optics of Carbon Stack Perovskite Solar Cells ceb23b4837db851ac099a7d2762b341c Robin Kerremans Robin Kerremans true false 9e91512a54d5aee66cd77851a96ba747 0000-0003-3778-8746 Oskar Sandberg Oskar Sandberg true false 78a4cf80ab2fe6cca80716b5d357d8dd 0000-0002-6901-772X Simone Meroni Simone Meroni true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 22b270622d739d81e131bec7a819e2fd Ardalan Armin Ardalan Armin true false 31e8fe57fa180d418afd48c3af280c2e 0000-0002-9049-7414 Paul Meredith Paul Meredith true false 2019-11-13 BGPS Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the >20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies >16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental‐simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective‐medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be ≈85%. Numerical drift‐diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity. Journal Article Solar RRL 4 2 1900221 Wiley 2367-198X 2367-198X carbon stack perovskite solar cells; drift-diffusion; internal quantum efficiency; optical modeling 7 2 2020 2020-02-07 10.1002/solr.201900221 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University EPSRC. Grant Number: EP/M015254/1 Ser Cymru II, ERDF. Grant Number: Ser Cymru II Ser Cymru II. Grant Number: Rising Star 2022-12-05T12:02:04.5382816 2019-11-13T16:47:33.9015292 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Robin Kerremans 1 Oskar Sandberg 0000-0003-3778-8746 2 Simone Meroni 0000-0002-6901-772X 3 Trystan Watson 0000-0002-8015-1436 4 Ardalan Armin 5 Paul Meredith 0000-0002-9049-7414 6 52738__16418__0f7ee576d73140af84b2544fd17901bf.pdf Manuscript Submitted SRRL.pdf 2020-01-24T08:39:34.3792252 Output 1494179 application/pdf Accepted Manuscript true 28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf true |
title |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
spellingShingle |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells Robin Kerremans Oskar Sandberg Simone Meroni Trystan Watson Ardalan Armin Paul Meredith |
title_short |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
title_full |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
title_fullStr |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
title_full_unstemmed |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
title_sort |
On the Electro‐Optics of Carbon Stack Perovskite Solar Cells |
author_id_str_mv |
ceb23b4837db851ac099a7d2762b341c 9e91512a54d5aee66cd77851a96ba747 78a4cf80ab2fe6cca80716b5d357d8dd a210327b52472cfe8df9b8108d661457 22b270622d739d81e131bec7a819e2fd 31e8fe57fa180d418afd48c3af280c2e |
author_id_fullname_str_mv |
ceb23b4837db851ac099a7d2762b341c_***_Robin Kerremans 9e91512a54d5aee66cd77851a96ba747_***_Oskar Sandberg 78a4cf80ab2fe6cca80716b5d357d8dd_***_Simone Meroni a210327b52472cfe8df9b8108d661457_***_Trystan Watson 22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin 31e8fe57fa180d418afd48c3af280c2e_***_Paul Meredith |
author |
Robin Kerremans Oskar Sandberg Simone Meroni Trystan Watson Ardalan Armin Paul Meredith |
author2 |
Robin Kerremans Oskar Sandberg Simone Meroni Trystan Watson Ardalan Armin Paul Meredith |
format |
Journal article |
container_title |
Solar RRL |
container_volume |
4 |
container_issue |
2 |
container_start_page |
1900221 |
publishDate |
2020 |
institution |
Swansea University |
issn |
2367-198X 2367-198X |
doi_str_mv |
10.1002/solr.201900221 |
publisher |
Wiley |
college_str |
Faculty of Science and Engineering |
hierarchytype |
|
hierarchy_top_id |
facultyofscienceandengineering |
hierarchy_top_title |
Faculty of Science and Engineering |
hierarchy_parent_id |
facultyofscienceandengineering |
hierarchy_parent_title |
Faculty of Science and Engineering |
department_str |
School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics |
document_store_str |
1 |
active_str |
0 |
description |
Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the >20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies >16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental‐simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective‐medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be ≈85%. Numerical drift‐diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity. |
published_date |
2020-02-07T13:48:52Z |
_version_ |
1821957142829072384 |
score |
11.048149 |