No Cover Image

Journal article 991 views 244 downloads

On the Electro‐Optics of Carbon Stack Perovskite Solar Cells

Robin Kerremans, Oskar Sandberg Orcid Logo, Simone Meroni Orcid Logo, Trystan Watson Orcid Logo, Ardalan Armin, Paul Meredith Orcid Logo

Solar RRL, Volume: 4, Issue: 2, Start page: 1900221

Swansea University Authors: Robin Kerremans, Oskar Sandberg Orcid Logo, Simone Meroni Orcid Logo, Trystan Watson Orcid Logo, Ardalan Armin, Paul Meredith Orcid Logo

  • Manuscript Submitted SRRL.pdf

    PDF | Accepted Manuscript

    28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf

    Download (1.42MB)

Check full text

DOI (Published version): 10.1002/solr.201900221

Abstract

Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon elect...

Full description

Published in: Solar RRL
ISSN: 2367-198X 2367-198X
Published: Wiley 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa52738
first_indexed 2020-01-24T13:43:57Z
last_indexed 2023-01-11T14:30:01Z
id cronfa52738
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2022-12-05T12:02:04.5382816</datestamp><bib-version>v2</bib-version><id>52738</id><entry>2019-11-13</entry><title>On the Electro&#x2010;Optics of Carbon Stack Perovskite Solar Cells</title><swanseaauthors><author><sid>ceb23b4837db851ac099a7d2762b341c</sid><firstname>Robin</firstname><surname>Kerremans</surname><name>Robin Kerremans</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>9e91512a54d5aee66cd77851a96ba747</sid><ORCID>0000-0003-3778-8746</ORCID><firstname>Oskar</firstname><surname>Sandberg</surname><name>Oskar Sandberg</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>78a4cf80ab2fe6cca80716b5d357d8dd</sid><ORCID>0000-0002-6901-772X</ORCID><firstname>Simone</firstname><surname>Meroni</surname><name>Simone Meroni</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>a210327b52472cfe8df9b8108d661457</sid><ORCID>0000-0002-8015-1436</ORCID><firstname>Trystan</firstname><surname>Watson</surname><name>Trystan Watson</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>22b270622d739d81e131bec7a819e2fd</sid><firstname>Ardalan</firstname><surname>Armin</surname><name>Ardalan Armin</name><active>true</active><ethesisStudent>false</ethesisStudent></author><author><sid>31e8fe57fa180d418afd48c3af280c2e</sid><ORCID>0000-0002-9049-7414</ORCID><firstname>Paul</firstname><surname>Meredith</surname><name>Paul Meredith</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2019-11-13</date><deptcode>BGPS</deptcode><abstract>Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low&#x2010;cost perovskite solar cells amenable to high&#x2010;throughput manufacturing. These cells are characterized by microns&#x2010;thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the &gt;20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies &gt;16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental&#x2010;simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective&#x2010;medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be &#x2248;85%. Numerical drift&#x2010;diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity.</abstract><type>Journal Article</type><journal>Solar RRL</journal><volume>4</volume><journalNumber>2</journalNumber><paginationStart>1900221</paginationStart><paginationEnd/><publisher>Wiley</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>2367-198X</issnPrint><issnElectronic>2367-198X</issnElectronic><keywords>carbon stack perovskite solar cells; drift-diffusion; internal quantum efficiency; optical modeling</keywords><publishedDay>7</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-07</publishedDate><doi>10.1002/solr.201900221</doi><url/><notes/><college>COLLEGE NANME</college><department>Biosciences Geography and Physics School</department><CollegeCode>COLLEGE CODE</CollegeCode><DepartmentCode>BGPS</DepartmentCode><institution>Swansea University</institution><apcterm/><funders>EPSRC. Grant Number: EP/M015254/1 Ser Cymru II, ERDF. Grant Number: Ser Cymru II Ser Cymru II. Grant Number: Rising Star</funders><projectreference/><lastEdited>2022-12-05T12:02:04.5382816</lastEdited><Created>2019-11-13T16:47:33.9015292</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Biosciences, Geography and Physics - Physics</level></path><authors><author><firstname>Robin</firstname><surname>Kerremans</surname><order>1</order></author><author><firstname>Oskar</firstname><surname>Sandberg</surname><orcid>0000-0003-3778-8746</orcid><order>2</order></author><author><firstname>Simone</firstname><surname>Meroni</surname><orcid>0000-0002-6901-772X</orcid><order>3</order></author><author><firstname>Trystan</firstname><surname>Watson</surname><orcid>0000-0002-8015-1436</orcid><order>4</order></author><author><firstname>Ardalan</firstname><surname>Armin</surname><order>5</order></author><author><firstname>Paul</firstname><surname>Meredith</surname><orcid>0000-0002-9049-7414</orcid><order>6</order></author></authors><documents><document><filename>52738__16418__0f7ee576d73140af84b2544fd17901bf.pdf</filename><originalFilename>Manuscript Submitted SRRL.pdf</originalFilename><uploaded>2020-01-24T08:39:34.3792252</uploaded><type>Output</type><contentLength>1494179</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><documentNotes>28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf</documentNotes><copyrightCorrect>true</copyrightCorrect></document></documents><OutputDurs/></rfc1807>
spelling 2022-12-05T12:02:04.5382816 v2 52738 2019-11-13 On the Electro‐Optics of Carbon Stack Perovskite Solar Cells ceb23b4837db851ac099a7d2762b341c Robin Kerremans Robin Kerremans true false 9e91512a54d5aee66cd77851a96ba747 0000-0003-3778-8746 Oskar Sandberg Oskar Sandberg true false 78a4cf80ab2fe6cca80716b5d357d8dd 0000-0002-6901-772X Simone Meroni Simone Meroni true false a210327b52472cfe8df9b8108d661457 0000-0002-8015-1436 Trystan Watson Trystan Watson true false 22b270622d739d81e131bec7a819e2fd Ardalan Armin Ardalan Armin true false 31e8fe57fa180d418afd48c3af280c2e 0000-0002-9049-7414 Paul Meredith Paul Meredith true false 2019-11-13 BGPS Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the >20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies >16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental‐simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective‐medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be ≈85%. Numerical drift‐diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity. Journal Article Solar RRL 4 2 1900221 Wiley 2367-198X 2367-198X carbon stack perovskite solar cells; drift-diffusion; internal quantum efficiency; optical modeling 7 2 2020 2020-02-07 10.1002/solr.201900221 COLLEGE NANME Biosciences Geography and Physics School COLLEGE CODE BGPS Swansea University EPSRC. Grant Number: EP/M015254/1 Ser Cymru II, ERDF. Grant Number: Ser Cymru II Ser Cymru II. Grant Number: Rising Star 2022-12-05T12:02:04.5382816 2019-11-13T16:47:33.9015292 Faculty of Science and Engineering School of Biosciences, Geography and Physics - Physics Robin Kerremans 1 Oskar Sandberg 0000-0003-3778-8746 2 Simone Meroni 0000-0002-6901-772X 3 Trystan Watson 0000-0002-8015-1436 4 Ardalan Armin 5 Paul Meredith 0000-0002-9049-7414 6 52738__16418__0f7ee576d73140af84b2544fd17901bf.pdf Manuscript Submitted SRRL.pdf 2020-01-24T08:39:34.3792252 Output 1494179 application/pdf Accepted Manuscript true 28/01/20 ED - Permission to publish. https://application.wiley-vch.de/util/cta/physsci-en.pdf true
title On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
spellingShingle On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
Robin Kerremans
Oskar Sandberg
Simone Meroni
Trystan Watson
Ardalan Armin
Paul Meredith
title_short On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
title_full On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
title_fullStr On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
title_full_unstemmed On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
title_sort On the Electro‐Optics of Carbon Stack Perovskite Solar Cells
author_id_str_mv ceb23b4837db851ac099a7d2762b341c
9e91512a54d5aee66cd77851a96ba747
78a4cf80ab2fe6cca80716b5d357d8dd
a210327b52472cfe8df9b8108d661457
22b270622d739d81e131bec7a819e2fd
31e8fe57fa180d418afd48c3af280c2e
author_id_fullname_str_mv ceb23b4837db851ac099a7d2762b341c_***_Robin Kerremans
9e91512a54d5aee66cd77851a96ba747_***_Oskar Sandberg
78a4cf80ab2fe6cca80716b5d357d8dd_***_Simone Meroni
a210327b52472cfe8df9b8108d661457_***_Trystan Watson
22b270622d739d81e131bec7a819e2fd_***_Ardalan Armin
31e8fe57fa180d418afd48c3af280c2e_***_Paul Meredith
author Robin Kerremans
Oskar Sandberg
Simone Meroni
Trystan Watson
Ardalan Armin
Paul Meredith
author2 Robin Kerremans
Oskar Sandberg
Simone Meroni
Trystan Watson
Ardalan Armin
Paul Meredith
format Journal article
container_title Solar RRL
container_volume 4
container_issue 2
container_start_page 1900221
publishDate 2020
institution Swansea University
issn 2367-198X
2367-198X
doi_str_mv 10.1002/solr.201900221
publisher Wiley
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Biosciences, Geography and Physics - Physics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Biosciences, Geography and Physics - Physics
document_store_str 1
active_str 0
description Mesoporous carbon stack architecture is attracting considerable interest as a candidate for scalable, low‐cost perovskite solar cells amenable to high‐throughput manufacturing. These cells are characterized by microns‐thick mesoporous titania and zirconia layers capped by a nonselective carbon electrode with the whole stack being infused with a perovskite semiconductor. Although the architecture does not deliver the >20% power conversion efficiencies characteristic of perovskite planar and mesoporous geometries, it does produce cells with respectable efficiencies >16%, which is unexpected due to the carbon electrode being a nonideal anode and the active layers being so thick. Optimization of these cells requires an understanding of the coupled efficiencies of light absorption, charge generation, and extraction which is currently unavailable. Herein, a combined experimental‐simulation study that elucidates photogeneration and extraction is reported. By determining the optical constants of the individual components and using effective‐medium approximations, the internal quantum efficiencies (IQE) in both the titania and zirconia layers are determined to be ≈85%. Numerical drift‐diffusion simulations indicate that this high IQE is a consequence of the thick junctions reducing minority carrier concentrations at the electrodes, thereby decreasing surface recombination. This insight can now be used to tune the carbon stack for efficiency and simplicity.
published_date 2020-02-07T13:48:52Z
_version_ 1821957142829072384
score 11.048149