Journal article 1153 views 593 downloads
Clustering and Classification for Time Series Data in Visual Analytics: A Survey
IEEE Access, Volume: 7, Pages: 181314 - 181338
Swansea University Authors: Mohammed Ali, Ali Alqahtani, Mark Jones , Xianghua Xie
-
PDF | Version of Record
Released under the terms of a Creative Commons Attribution 4.0 License (CC-BY).
Download (2.15MB)
DOI (Published version): 10.1109/access.2019.2958551
Abstract
Visual analytics for time series data has received a considerable amount of attention. Different approaches have been developed to understand the characteristics of the data and obtain meaningful statistics in order to explore the underlying processes, identify and estimate trends, make decisions an...
Published in: | IEEE Access |
---|---|
ISSN: | 2169-3536 |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2019
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa52963 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract: |
Visual analytics for time series data has received a considerable amount of attention. Different approaches have been developed to understand the characteristics of the data and obtain meaningful statistics in order to explore the underlying processes, identify and estimate trends, make decisions and predict the future. The machine learning and visualization areas share a focus on extracting information from data. In this paper, we consider not only automatic methods but also interactive exploration. The ability to embed efficient machine learning techniques (clustering and classification) in interactive visualization systems is highly desirable in order to gain the most from both humans and computers. We present a literature review of some of the most important publications in the field and classify over 60 published papers from six different perspectives. This review intends to clarify the major concepts with which clustering or classification algorithms are used in visual analytics for time series data and provide a valuable guide for both new researchers and experts in the emerging field of integrating machine learning techniques into visual analytics. |
---|---|
Keywords: |
time series data, clustering, classification, visualization, visual analytics |
Funders: |
UKRI, EPSRC EP/N028139/1) |
Start Page: |
181314 |
End Page: |
181338 |