Book 1509 views
Realisability and adequacy for (co)induction
Ulrich Berger,
David Benton,
David Benton,
David Benton,
Katharina Hall,
Robert Rhys
Pages: 49 - 60
Swansea University Author: Ulrich Berger
Full text not available from this repository: check for access using links below.
DOI (Published version): 10.4230/OASIcs.CCA.2009.2258
Abstract
We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the...
| Published: |
Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2009
|
|---|---|
| Online Access: |
http://drops.dagstuhl.de/opus/volltexte/2009/2258 |
| URI: | https://cronfa.swan.ac.uk/Record/cronfa53 |
| first_indexed |
2013-07-23T11:49:23Z |
|---|---|
| last_indexed |
2018-02-09T04:27:21Z |
| id |
cronfa53 |
| recordtype |
SURis |
| fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2013-10-17T11:56:18.4177127</datestamp><bib-version>v2</bib-version><id>53</id><entry>2012-02-23</entry><title>Realisability and adequacy for (co)induction</title><swanseaauthors><author><sid>61199ae25042a5e629c5398c4a40a4f5</sid><firstname>Ulrich</firstname><surname>Berger</surname><name>Ulrich Berger</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2012-02-23</date><abstract>We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis.</abstract><type>Book</type><journal></journal><volume></volume><journalNumber></journalNumber><paginationStart>49</paginationStart><paginationEnd>60</paginationEnd><publisher>Schloss Dagstuhl - Leibniz-Zentrum für Informatik</publisher><placeOfPublication/><issnPrint/><issnElectronic/><keywords/><publishedDay>31</publishedDay><publishedMonth>12</publishedMonth><publishedYear>2009</publishedYear><publishedDate>2009-12-31</publishedDate><doi>10.4230/OASIcs.CCA.2009.2258</doi><url>http://drops.dagstuhl.de/opus/volltexte/2009/2258</url><notes>In CCA '09, Proc. Sixth Intl. Conference on Computability and Complexity in Analysis, Ljubljana, Slovenia</notes><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2013-10-17T11:56:18.4177127</lastEdited><Created>2012-02-23T17:01:55.0000000</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Computer Science</level></path><authors><author><firstname>Ulrich</firstname><surname>Berger</surname><order>1</order></author><author><firstname>David</firstname><surname>Benton</surname><order>2</order></author><author><firstname>David</firstname><surname>Benton</surname><order>3</order></author><author><firstname>David</firstname><surname>Benton</surname><order>4</order></author><author><firstname>Katharina</firstname><surname>Hall</surname><order>5</order></author><author><firstname>Robert</firstname><surname>Rhys</surname><order>6</order></author></authors><documents/><OutputDurs/></rfc1807> |
| spelling |
2013-10-17T11:56:18.4177127 v2 53 2012-02-23 Realisability and adequacy for (co)induction 61199ae25042a5e629c5398c4a40a4f5 Ulrich Berger Ulrich Berger true false 2012-02-23 We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis. Book 49 60 Schloss Dagstuhl - Leibniz-Zentrum für Informatik 31 12 2009 2009-12-31 10.4230/OASIcs.CCA.2009.2258 http://drops.dagstuhl.de/opus/volltexte/2009/2258 In CCA '09, Proc. Sixth Intl. Conference on Computability and Complexity in Analysis, Ljubljana, Slovenia COLLEGE NANME COLLEGE CODE Swansea University 2013-10-17T11:56:18.4177127 2012-02-23T17:01:55.0000000 Faculty of Science and Engineering School of Mathematics and Computer Science - Computer Science Ulrich Berger 1 David Benton 2 David Benton 3 David Benton 4 Katharina Hall 5 Robert Rhys 6 |
| title |
Realisability and adequacy for (co)induction |
| spellingShingle |
Realisability and adequacy for (co)induction Ulrich Berger |
| title_short |
Realisability and adequacy for (co)induction |
| title_full |
Realisability and adequacy for (co)induction |
| title_fullStr |
Realisability and adequacy for (co)induction |
| title_full_unstemmed |
Realisability and adequacy for (co)induction |
| title_sort |
Realisability and adequacy for (co)induction |
| author_id_str_mv |
61199ae25042a5e629c5398c4a40a4f5 |
| author_id_fullname_str_mv |
61199ae25042a5e629c5398c4a40a4f5_***_Ulrich Berger |
| author |
Ulrich Berger |
| author2 |
Ulrich Berger David Benton David Benton David Benton Katharina Hall Robert Rhys |
| format |
Book |
| container_start_page |
49 |
| publishDate |
2009 |
| institution |
Swansea University |
| doi_str_mv |
10.4230/OASIcs.CCA.2009.2258 |
| publisher |
Schloss Dagstuhl - Leibniz-Zentrum für Informatik |
| college_str |
Faculty of Science and Engineering |
| hierarchytype |
|
| hierarchy_top_id |
facultyofscienceandengineering |
| hierarchy_top_title |
Faculty of Science and Engineering |
| hierarchy_parent_id |
facultyofscienceandengineering |
| hierarchy_parent_title |
Faculty of Science and Engineering |
| department_str |
School of Mathematics and Computer Science - Computer Science{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Computer Science |
| url |
http://drops.dagstuhl.de/opus/volltexte/2009/2258 |
| document_store_str |
0 |
| active_str |
0 |
| description |
We prove the correctness of a formalised realisability interpretation of extensions of first-order theories by inductive and coinductive definitions in an untyped $\lambda$-calculus with fixed-points. We illustrate the use of this interpretation for program extraction by some simple examples in the area of exact real number computation and hint at further non-trivial applications in computable analysis. |
| published_date |
2009-12-31T03:03:06Z |
| _version_ |
1851451125675327488 |
| score |
11.089572 |

