No Cover Image

Journal article 1294 views 458 downloads

In situ investigation of perovskite solar cells’ efficiency and stability in a mimic stratospheric environment for high-altitude pseudo-satellites

Jérémy Barbé, Adam Pockett, Vasil Stoichkov, Declan Hughes, Harrison Ka Hin Lee, Matt Carnie Orcid Logo, Trystan Watson Orcid Logo, Wing Chung Tsoi Orcid Logo

Journal of Materials Chemistry C, Volume: 8, Issue: 5, Pages: 1715 - 1721

Swansea University Authors: Matt Carnie Orcid Logo, Trystan Watson Orcid Logo, Wing Chung Tsoi Orcid Logo

Check full text

DOI (Published version): 10.1039/c9tc04984c

Abstract

Perovskite solar cells with high power-per-weight have great potential to be used for aerospace applications such as satellites or high-altitude pseudo-satellites. The latter are unmanned aircraft exclusively powered by solar energy, typically flying in the stratosphere where the conditions of press...

Full description

Published in: Journal of Materials Chemistry C
ISSN: 2050-7526 2050-7534
Published: Royal Society of Chemistry (RSC) 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53136
Abstract: Perovskite solar cells with high power-per-weight have great potential to be used for aerospace applications such as satellites or high-altitude pseudo-satellites. The latter are unmanned aircraft exclusively powered by solar energy, typically flying in the stratosphere where the conditions of pressure, temperature and illumination are critically different from that on the earth's surface. In this work, we evaluate the performance and stability of high efficiency perovskite solar cells under a mimic stratospheric environment. In situ measurements under controlled conditions of pressure, temperature and illumination were developed. We show that the cells can operate efficiently in a large range of temperature from −50 °C to +20 °C, with a maximum power conversion efficiency at −20 °C, which is ideal for use in the stratosphere. Besides, performances are maintained after a number of temperature cycles down to −85 °C, representative of temperature variations due to diurnal cycles. An efficient encapsulation is developed, which could be critical to avoid the accelerated degradation of the cells under vacuum. Finally, a promising stability for 25 days of day–night cycles was demonstrated, which suggests that perovskite solar cells could be used to power high altitude pseudo-satellites.
Issue: 5
Start Page: 1715
End Page: 1721