Journal article 833 views 280 downloads
Global well-posedness and large deviations for 3D stochastic Burgers equations
Rangrang Zhang,
Guoli Zhou,
Boling Guo,
Jiang-lun Wu
Zeitschrift für angewandte Mathematik und Physik, Volume: 71, Issue: 1
Swansea University Author: Jiang-lun Wu
-
PDF | Accepted Manuscript
Download (190.69KB)
DOI (Published version): 10.1007/s00033-020-1259-z
Abstract
In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a prio...
Published in: | Zeitschrift für angewandte Mathematik und Physik |
---|---|
ISSN: | 0044-2275 1420-9039 |
Published: |
Springer Science and Business Media LLC
2020
|
Online Access: |
Check full text
|
URI: | https://cronfa.swan.ac.uk/Record/cronfa53378 |
first_indexed |
2020-01-28T19:39:05Z |
---|---|
last_indexed |
2020-09-17T03:16:36Z |
id |
cronfa53378 |
recordtype |
SURis |
fullrecord |
<?xml version="1.0"?><rfc1807><datestamp>2020-01-28T14:34:47.0705505</datestamp><bib-version>v2</bib-version><id>53378</id><entry>2020-01-28</entry><title>Global well-posedness and large deviations for 3D stochastic Burgers equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-01-28</date><abstract>In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.</abstract><type>Journal Article</type><journal>Zeitschrift für angewandte Mathematik und Physik</journal><volume>71</volume><journalNumber>1</journalNumber><publisher>Springer Science and Business Media LLC</publisher><issnPrint>0044-2275</issnPrint><issnElectronic>1420-9039</issnElectronic><keywords>3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle.</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1007/s00033-020-1259-z</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm/><lastEdited>2020-01-28T14:34:47.0705505</lastEdited><Created>2020-01-28T14:34:47.0705505</Created><authors><author><firstname>Rangrang</firstname><surname>Zhang</surname><order>1</order></author><author><firstname>Guoli</firstname><surname>Zhou</surname><order>2</order></author><author><firstname>Boling</firstname><surname>Guo</surname><order>3</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>4</order></author></authors><documents><document><filename>53378__16458__db20341c3f4641c89d185350ac83a455.pdf</filename><originalFilename>ZhangZhouGuoWu.pdf</originalFilename><uploaded>2020-01-28T14:38:36.5727155</uploaded><type>Output</type><contentLength>195271</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-01-29T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807> |
spelling |
2020-01-28T14:34:47.0705505 v2 53378 2020-01-28 Global well-posedness and large deviations for 3D stochastic Burgers equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2020-01-28 In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero. Journal Article Zeitschrift für angewandte Mathematik und Physik 71 1 Springer Science and Business Media LLC 0044-2275 1420-9039 3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle. 1 2 2020 2020-02-01 10.1007/s00033-020-1259-z COLLEGE NANME COLLEGE CODE Swansea University 2020-01-28T14:34:47.0705505 2020-01-28T14:34:47.0705505 Rangrang Zhang 1 Guoli Zhou 2 Boling Guo 3 Jiang-lun Wu 4 53378__16458__db20341c3f4641c89d185350ac83a455.pdf ZhangZhouGuoWu.pdf 2020-01-28T14:38:36.5727155 Output 195271 application/pdf Accepted Manuscript true 2021-01-29T00:00:00.0000000 true eng |
title |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
spellingShingle |
Global well-posedness and large deviations for 3D stochastic Burgers equations Jiang-lun Wu |
title_short |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
title_full |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
title_fullStr |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
title_full_unstemmed |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
title_sort |
Global well-posedness and large deviations for 3D stochastic Burgers equations |
author_id_str_mv |
dbd67e30d59b0f32592b15b5705af885 |
author_id_fullname_str_mv |
dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu |
author |
Jiang-lun Wu |
author2 |
Rangrang Zhang Guoli Zhou Boling Guo Jiang-lun Wu |
format |
Journal article |
container_title |
Zeitschrift für angewandte Mathematik und Physik |
container_volume |
71 |
container_issue |
1 |
publishDate |
2020 |
institution |
Swansea University |
issn |
0044-2275 1420-9039 |
doi_str_mv |
10.1007/s00033-020-1259-z |
publisher |
Springer Science and Business Media LLC |
document_store_str |
1 |
active_str |
0 |
description |
In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero. |
published_date |
2020-02-01T07:55:53Z |
_version_ |
1821934934711861248 |
score |
11.048064 |