No Cover Image

Journal article 895 views 298 downloads

Global well-posedness and large deviations for 3D stochastic Burgers equations

Rangrang Zhang, Guoli Zhou, Boling Guo, Jiang-lun Wu

Zeitschrift für angewandte Mathematik und Physik, Volume: 71, Issue: 1, Start page: 30

Swansea University Author: Jiang-lun Wu

Abstract

In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a prio...

Full description

Published in: Zeitschrift für angewandte Mathematik und Physik
ISSN: 0044-2275 1420-9039
Published: Springer Science and Business Media LLC 2020
Online Access: Check full text

URI: https://cronfa.swan.ac.uk/Record/cronfa53378
first_indexed 2020-01-28T19:39:05Z
last_indexed 2025-03-12T04:50:49Z
id cronfa53378
recordtype SURis
fullrecord <?xml version="1.0"?><rfc1807><datestamp>2025-03-11T15:35:57.7531787</datestamp><bib-version>v2</bib-version><id>53378</id><entry>2020-01-28</entry><title>Global well-posedness and large deviations for 3D stochastic Burgers equations</title><swanseaauthors><author><sid>dbd67e30d59b0f32592b15b5705af885</sid><firstname>Jiang-lun</firstname><surname>Wu</surname><name>Jiang-lun Wu</name><active>true</active><ethesisStudent>false</ethesisStudent></author></swanseaauthors><date>2020-01-28</date><abstract>In this paper, we study the stochastic vector-valued Burgers equations with non &#x2212; periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.</abstract><type>Journal Article</type><journal>Zeitschrift f&#xFC;r angewandte Mathematik und Physik</journal><volume>71</volume><journalNumber>1</journalNumber><paginationStart>30</paginationStart><paginationEnd/><publisher>Springer Science and Business Media LLC</publisher><placeOfPublication/><isbnPrint/><isbnElectronic/><issnPrint>0044-2275</issnPrint><issnElectronic>1420-9039</issnElectronic><keywords>3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle.</keywords><publishedDay>1</publishedDay><publishedMonth>2</publishedMonth><publishedYear>2020</publishedYear><publishedDate>2020-02-01</publishedDate><doi>10.1007/s00033-020-1259-z</doi><url/><notes/><college>COLLEGE NANME</college><CollegeCode>COLLEGE CODE</CollegeCode><institution>Swansea University</institution><apcterm>Not Required</apcterm><funders>This work was partially supported by NNSF of China (Grant Nos. 11971077, 11801032), Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (No. 2008DP173182), China Postdoctoral Science Foundation funded project (No. 2018M641204), Natural Science Foundation Project of CQ (Grant No. cstc2016jcyjA0326), Fundamental Research Funds for the Central Universities (Grant Nos. 2018CDXYST0024, 63181314) and China Scholarship Council (Grant No.201506055003).</funders><projectreference/><lastEdited>2025-03-11T15:35:57.7531787</lastEdited><Created>2020-01-28T14:34:47.0705505</Created><path><level id="1">Faculty of Science and Engineering</level><level id="2">School of Mathematics and Computer Science - Mathematics</level></path><authors><author><firstname>Rangrang</firstname><surname>Zhang</surname><order>1</order></author><author><firstname>Guoli</firstname><surname>Zhou</surname><order>2</order></author><author><firstname>Boling</firstname><surname>Guo</surname><order>3</order></author><author><firstname>Jiang-lun</firstname><surname>Wu</surname><order>4</order></author></authors><documents><document><filename>53378__16458__db20341c3f4641c89d185350ac83a455.pdf</filename><originalFilename>ZhangZhouGuoWu.pdf</originalFilename><uploaded>2020-01-28T14:38:36.5727155</uploaded><type>Output</type><contentLength>195271</contentLength><contentType>application/pdf</contentType><version>Accepted Manuscript</version><cronfaStatus>true</cronfaStatus><embargoDate>2021-01-29T00:00:00.0000000</embargoDate><copyrightCorrect>true</copyrightCorrect><language>eng</language></document></documents><OutputDurs/></rfc1807>
spelling 2025-03-11T15:35:57.7531787 v2 53378 2020-01-28 Global well-posedness and large deviations for 3D stochastic Burgers equations dbd67e30d59b0f32592b15b5705af885 Jiang-lun Wu Jiang-lun Wu true false 2020-01-28 In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero. Journal Article Zeitschrift für angewandte Mathematik und Physik 71 1 30 Springer Science and Business Media LLC 0044-2275 1420-9039 3D stochastic Burgers equations; global well-posedness; the Freidlin-Wentzell type large deviation principle. 1 2 2020 2020-02-01 10.1007/s00033-020-1259-z COLLEGE NANME COLLEGE CODE Swansea University Not Required This work was partially supported by NNSF of China (Grant Nos. 11971077, 11801032), Key Laboratory of Random Complex Structures and Data Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences (No. 2008DP173182), China Postdoctoral Science Foundation funded project (No. 2018M641204), Natural Science Foundation Project of CQ (Grant No. cstc2016jcyjA0326), Fundamental Research Funds for the Central Universities (Grant Nos. 2018CDXYST0024, 63181314) and China Scholarship Council (Grant No.201506055003). 2025-03-11T15:35:57.7531787 2020-01-28T14:34:47.0705505 Faculty of Science and Engineering School of Mathematics and Computer Science - Mathematics Rangrang Zhang 1 Guoli Zhou 2 Boling Guo 3 Jiang-lun Wu 4 53378__16458__db20341c3f4641c89d185350ac83a455.pdf ZhangZhouGuoWu.pdf 2020-01-28T14:38:36.5727155 Output 195271 application/pdf Accepted Manuscript true 2021-01-29T00:00:00.0000000 true eng
title Global well-posedness and large deviations for 3D stochastic Burgers equations
spellingShingle Global well-posedness and large deviations for 3D stochastic Burgers equations
Jiang-lun Wu
title_short Global well-posedness and large deviations for 3D stochastic Burgers equations
title_full Global well-posedness and large deviations for 3D stochastic Burgers equations
title_fullStr Global well-posedness and large deviations for 3D stochastic Burgers equations
title_full_unstemmed Global well-posedness and large deviations for 3D stochastic Burgers equations
title_sort Global well-posedness and large deviations for 3D stochastic Burgers equations
author_id_str_mv dbd67e30d59b0f32592b15b5705af885
author_id_fullname_str_mv dbd67e30d59b0f32592b15b5705af885_***_Jiang-lun Wu
author Jiang-lun Wu
author2 Rangrang Zhang
Guoli Zhou
Boling Guo
Jiang-lun Wu
format Journal article
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 71
container_issue 1
container_start_page 30
publishDate 2020
institution Swansea University
issn 0044-2275
1420-9039
doi_str_mv 10.1007/s00033-020-1259-z
publisher Springer Science and Business Media LLC
college_str Faculty of Science and Engineering
hierarchytype
hierarchy_top_id facultyofscienceandengineering
hierarchy_top_title Faculty of Science and Engineering
hierarchy_parent_id facultyofscienceandengineering
hierarchy_parent_title Faculty of Science and Engineering
department_str School of Mathematics and Computer Science - Mathematics{{{_:::_}}}Faculty of Science and Engineering{{{_:::_}}}School of Mathematics and Computer Science - Mathematics
document_store_str 1
active_str 0
description In this paper, we study the stochastic vector-valued Burgers equations with non − periodic boundary conditions. We first apply a contraction principle argument to show local existence and uniqueness of a mild solution to this model. Then, towards obtaining the global well-posedness, we derive a priori estimates of the local solution by utilising the maximum principle. Finally, we establish, by means of the weak convergence approach, the Freidlin-Wentzell type large deviation principle for 3D stochastic Burgers equations when the noise term goes to zero.
published_date 2020-02-01T08:47:52Z
_version_ 1828366815383781376
score 11.057753